Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2013-01, Vol.57 (1), p.1851-1857
Hauptverfasser: Da'as, Eman Husni, Irvine, John T. S., Traversa, Enrico, Boulfrad, Samir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.
ISSN:1938-5862
1938-6737
DOI:10.1149/05701.1851ecst