Mechanical Control of Magnetic Order: From Phase Transition to Skyrmions

Topological magnetic structures such as domain walls, vortices, and skyrmions have recently received considerable attention because of their potential application in advanced functional devices. Tuning the magnetic order of the topological structures can result in emergent functionalities and thus l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of materials research 2019-07, Vol.49 (1), p.361-388
1. Verfasser: Wang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topological magnetic structures such as domain walls, vortices, and skyrmions have recently received considerable attention because of their potential application in advanced functional devices. Tuning the magnetic order of the topological structures can result in emergent functionalities and thus lead to novel application concepts. Strain engineering is one promising approach with which to control magnetic order via magneto-elastic coupling in ferromagnets. By introducing lattice deformation, mechanical strain not only can trigger the magnetic phase transition but also can be used to manipulate topological magnetic orders in ferromagnets. The present review is based on magneto-elastic coupling as the coherent basis of the mechanical control of different topological magnetic orders. Following a description of magneto-elastic coupling, we review recent progress in the mechanical control of the magnetic phase transition and topological structures, including magnetic domain walls, vortices, and skyrmions. The review concludes by briefly addressing the future research directions in the field.
ISSN:1531-7331
1545-4118
DOI:10.1146/annurev-matsci-070218-010200