Rotating Horizontal Convection
Global differences of temperature and buoyancy flux at the ocean surface are responsible for small-scale convection at high latitudes, global overturning, and the top-to-bottom density difference in the oceans. With planetary rotation the convection also contributes to the large-scale horizontal, ge...
Gespeichert in:
Veröffentlicht in: | Annual review of fluid mechanics 2022-01, Vol.54 (1), p.105-132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Global differences of temperature and buoyancy flux at the ocean surface are responsible for small-scale convection at high latitudes, global overturning, and the top-to-bottom density difference in the oceans. With planetary rotation the convection also contributes to the large-scale horizontal, geostrophic circulation, and it crucially involves a 3D linkage between the geostrophic circulation and vertical overturning. The governing dynamics of such a surface-forced convective flow are fundamentally different from Rayleigh-Bénard convection, and the role of buoyancy forcing in the oceans is poorly understood. Geostrophic balance adds to the constraints on transport in horizontal convection, as illustrated by experiments, theoretical scaling, and turbulence-resolving simulations for closed (mid-latitude) basins and an annulus or reentrant zonal (circumpolar) channel. In these geometries, buoyancy drives either horizontal mid-latitude gyre recirculations or a strong Antarctic Circumpolar Current, respectively, in addition to overturning. At large Rayleigh numbers the release of available potential energy by convection leads to turbulent mixing with a mixing efficiency approaching unity. Turbulence-resolving models are also revealing the relative roles of wind stress and buoyancy when there is mixed forcing, and in future work they need to include the effects of turbulent mixing due to energy input from tides. |
---|---|
ISSN: | 0066-4189 1545-4479 |
DOI: | 10.1146/annurev-fluid-030121-115729 |