Mining sales data using a neural network model of market response

Modeling aggregate market response is a core issue in marketing research. In this research, we extend previous forecasting comparative research by comparing the forecasting accuracy of feed-forward neural network models to the premier market modeling technique, Multiplicative Competitive Interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGKDD explorations 1999-06, Vol.1 (1), p.39-43
Hauptverfasser: Gruca, Thomas S., Klemz, Bruce R., Petersen, E. Ann Furr
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modeling aggregate market response is a core issue in marketing research. In this research, we extend previous forecasting comparative research by comparing the forecasting accuracy of feed-forward neural network models to the premier market modeling technique, Multiplicative Competitive Interaction (MCI) models. Forecasts are compared in two separate studies: (1) the Information Resources Inc. (IRI) coffee dataset from Marion, IN and (2) the A. C. Nielsen catsup dataset from Sioux Falls, SD. Our results suggest neural networks are a useful substitute for MCI models when there are too few observations available to estimate a fully-extended MCI model. Implications are discussed.
ISSN:1931-0145
1931-0153
DOI:10.1145/846170.846174