Recognition of Counterfactual Statements in Turkish
Counterfactual statements are examples of causal reasoning as they describe events that did not happen and, optionally, those events’ consequences if they happened. SemEval-2020 introduces the counterfactual detection (CFD) task and shares an English dataset. Since then, a set of datasets has been r...
Gespeichert in:
Veröffentlicht in: | ACM transactions on Asian and low-resource language information processing 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Counterfactual statements are examples of causal reasoning as they describe events that did not happen and, optionally, those events’ consequences if they happened. SemEval-2020 introduces the counterfactual detection (CFD) task and shares an English dataset. Since then, a set of datasets has been released in English, German, and Japanese as part of Amazon product reviews. This work releases the first Turkish corpus of counterfactuals (TRCD). The data collection process is driven by a clue phrase list of counterfactuals, mainly in the form of verb inflections in Turkish. We use clue phrase-based filtering to collect sentences from the Turkish National Corpus (TNC). On the other hand, half of the collection is subject to random word filtering to avoid selection bias due to clue phrases. After the human annotation process with an Inter Annotator Agreement of 0.65, we have 5000 sentences, of which \(12.8\% \) contain counterfactual statements. Furthermore, we provide a comprehensive baseline of transformer-based models by testing the effect of clue phrases, cross-lingual performance comparisons using the available CFD datasets, and zero-shot cross-lingual classification experiments using fine-tuning on the different combinations of the existing datasets. The results confirm that TRCD is compatible with the other CFD datasets. Moreover, fine-tuning a Turkish-specific model (BERTurk) performs better than the multilingual alternatives (mBERT and XLM-R). BERTurk is more robust to clue phrase masking. This result emphasizes the importance of a language-specific tokenizer for contextual understanding, especially for low-resource languages. Finally, our qualitative analysis gives insights into errors by different models. |
---|---|
ISSN: | 2375-4699 2375-4702 |
DOI: | 10.1145/3706105 |