Towards Prototype-Based Self-Explainable Graph Neural Network

Graph Neural Networks (GNNs) have shown great ability in modeling graph-structured data for various domains. However, GNNs are known as black-box models that lack interpretability. Without understanding their inner working, we cannot fully trust them, which largely limits their adoption in high-stak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on knowledge discovery from data 2024-08
Hauptverfasser: Dai, Enyan, Wang, Suhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graph Neural Networks (GNNs) have shown great ability in modeling graph-structured data for various domains. However, GNNs are known as black-box models that lack interpretability. Without understanding their inner working, we cannot fully trust them, which largely limits their adoption in high-stake scenarios. Though some initial efforts have been taken to interpret the predictions of GNNs, they mainly focus on providing post-hoc explanations using an additional explainer, which could misrepresent the true inner working mechanism of the target GNN. The works on self-explainable GNNs are rather limited. Therefore, we study a novel problem of learning prototype-based self-explainable GNNs that can simultaneously give accurate predictions and prototype-based explanations on predictions. We design a framework which can learn prototype graphs that capture representative patterns of each class as class-level explanations. The learned prototypes are also used to simultaneously make prediction for for a test instance and provide instance-level explanation. Extensive experiments on real-world and synthetic datasets show the effectiveness of the proposed framework for both prediction accuracy and explanation quality.
ISSN:1556-4681
1556-472X
DOI:10.1145/3689647