A Complete Finite Axiomatisation of the Equational Theory of Common Meadows

We analyse abstract data types that model numerical structures with a concept of error. Specifically, we focus on arithmetic data types that contain an error value \(\bot\) whose main purpose is to always return a value for division. To rings and fields, we add a division operator \(x/y\) and study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on computational logic 2025-01, Vol.26 (1), p.1-28
Hauptverfasser: Bergstra, Jan A, Tucker, John V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyse abstract data types that model numerical structures with a concept of error. Specifically, we focus on arithmetic data types that contain an error value \(\bot\) whose main purpose is to always return a value for division. To rings and fields, we add a division operator \(x/y\) and study a class of algebras called common meadows wherein \(x/0=\bot\) . The set of equations true in all common meadows is named the equational theory of common meadows. We give a finite equational axiomatisation of the equational theory of common meadows and prove that it is complete and that the equational theory is decidable.
ISSN:1529-3785
1557-945X
DOI:10.1145/3689211