Approximation by Meshes with Spherical Faces
Meshes with spherical faces and circular edges are an attractive alternative to polyhedral meshes for applications in architecture and design. Approximation of a given surface by such a mesh needs to consider the visual appearance, approximation quality, the position and orientation of circular inte...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2024-12, Vol.43 (6), p.1-18, Article 179 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Meshes with spherical faces and circular edges are an attractive alternative to polyhedral meshes for applications in architecture and design. Approximation of a given surface by such a mesh needs to consider the visual appearance, approximation quality, the position and orientation of circular intersections of neighboring faces and the existence of a torsion free support structure that is formed by the planes of circular edges. The latter requirement implies that the mesh simultaneously defines a second mesh whose faces lie on the same spheres as the faces of the first mesh. It is a discretization of the two envelopes of a sphere congruence, i.e., a two-parameter family of spheres. We relate such sphere congruences to torsal parameterizations of associated line congruences. Turning practical requirements into properties of such a line congruence, we optimize line and sphere congruence as a basis for computing a mesh with spherical triangular or quadrilateral faces that approximates a given reference surface. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/3687942 |