StarShip: Mitigating I/O Bottlenecks in Serverless Computing for Scientific Workflows
This work highlights the significance of I/O bottlenecks that data-intensive HPC workflows face in serverless environments - an issue that has been largely overlooked by prior works. We propose StarShip, a framework that leverages different storage options and multi-tier functions to reduce I/O over...
Gespeichert in:
Veröffentlicht in: | Performance evaluation review 2024-06, Vol.52 (1), p.79-80 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work highlights the significance of I/O bottlenecks that data-intensive HPC workflows face in serverless environments - an issue that has been largely overlooked by prior works. We propose StarShip, a framework that leverages different storage options and multi-tier functions to reduce I/O overhead by co-optimizing for service time and service cost. StarShip leverages the Levenberg-Marquardt optimization to find an effective solution in a large, complex search space. It outperforms existing methods with a 45% improvement in service time and a 37.6% reduction in service cost. |
---|---|
ISSN: | 0163-5999 1557-9484 |
DOI: | 10.1145/3673660.3655082 |