StarShip: Mitigating I/O Bottlenecks in Serverless Computing for Scientific Workflows

This work highlights the significance of I/O bottlenecks that data-intensive HPC workflows face in serverless environments - an issue that has been largely overlooked by prior works. We propose StarShip, a framework that leverages different storage options and multi-tier functions to reduce I/O over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Performance evaluation review 2024-06, Vol.52 (1), p.79-80
Hauptverfasser: Basu Roy, Rohan, Tiwari, Devesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work highlights the significance of I/O bottlenecks that data-intensive HPC workflows face in serverless environments - an issue that has been largely overlooked by prior works. We propose StarShip, a framework that leverages different storage options and multi-tier functions to reduce I/O overhead by co-optimizing for service time and service cost. StarShip leverages the Levenberg-Marquardt optimization to find an effective solution in a large, complex search space. It outperforms existing methods with a 45% improvement in service time and a 37.6% reduction in service cost.
ISSN:0163-5999
1557-9484
DOI:10.1145/3673660.3655082