Automated Backend Allocation for Multi-Model, On-Device AI Inference
On-Device Artificial Intelligence (AI) services such as face recognition, object tracking and voice recognition are rapidly scaling up deployments on embedded, memory-constrained hardware devices. These services typically delegate AI inference models for execution on CPU and GPU computing backends....
Gespeichert in:
Veröffentlicht in: | Performance evaluation review 2024-06, Vol.52 (1), p.27-28 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On-Device Artificial Intelligence (AI) services such as face recognition, object tracking and voice recognition are rapidly scaling up deployments on embedded, memory-constrained hardware devices. These services typically delegate AI inference models for execution on CPU and GPU computing backends. While GPU delegation is a common practice to achieve high speed computation, the approach suffers from degraded throughput and completion times under multi-model scenarios, i.e., concurrently executing services. This paper introduces a solution to sustain performance in multi-model, on-device AI contexts by dynamically allocating a combination of CPU and GPU backends per model. The allocation is feedback-driven, and guided by a knowledge of model-specific, multi-objective pareto fronts comprising inference latency and memory consumption. Our backend allocation algorithm that runs online per model, and achieves 25-100% improvement in throughput over static allocations as well as load-balancing scheduler solutions targeting multi-model scenarios. |
---|---|
ISSN: | 0163-5999 1557-9484 |
DOI: | 10.1145/3673660.3655046 |