Integrated Sensing, Communication, and Computing for Cost-effective Multimodal Federated Perception

Federated learning (FL) is a prominent paradigm of 6G edge intelligence (EI), which mitigates privacy breaches and high communication pressure caused by conventional centralized model training in the artificial intelligence of things (AIoT). The execution of multimodal federated perception (MFP) ser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on multimedia computing communications and applications 2024-08, Vol.20 (8), p.1-28, Article 237
Hauptverfasser: Chen, Ning, Cheng, Zhipeng, Fan, Xuwei, Liu, Zhang, Huang, Bangzhen, Zhao, Yifeng, Huang, Lianfen, Du, Xiaojiang, Guizani, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Federated learning (FL) is a prominent paradigm of 6G edge intelligence (EI), which mitigates privacy breaches and high communication pressure caused by conventional centralized model training in the artificial intelligence of things (AIoT). The execution of multimodal federated perception (MFP) services comprises three sub-processes, including sensing-based multimodal data generation, communication-based model transmission, and computing-based model training, ultimately competitive on available underlying multi-domain physical resources such as time, frequency, and computing power. How to reasonably coordinate the multi-domain resources scheduling among sensing, communication, and computing, therefore, is vital to the MFP networks. To address the above issues, this article explores service-oriented resource management with integrated sensing, communication, and computing (ISCC). Specifically, employing the incentive mechanism of the MFP service market, the resources management problem is defined as a social welfare maximization problem, where the concept of “expanding resources” and “reducing costs” is used to enhance learning performance gain and reduce resource costs. Experimental results demonstrate the effectiveness and robustness of the proposed resource scheduling mechanisms.
ISSN:1551-6857
1551-6865
DOI:10.1145/3661313