Determining the Largest Overlap between Tables
Both on the Web and in data lakes, it is possible to detect much redundant data in the form of largely overlapping pairs of tables. In many cases, this overlap is not accidental and provides significant information about the relatedness of the tables. Unfortunately, efficiently quantifying the overl...
Gespeichert in:
Veröffentlicht in: | Proceedings of the ACM on management of data 2024-03, Vol.2 (1), p.1-26, Article 48 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Both on the Web and in data lakes, it is possible to detect much redundant data in the form of largely overlapping pairs of tables. In many cases, this overlap is not accidental and provides significant information about the relatedness of the tables. Unfortunately, efficiently quantifying the overlap between two tables is not trivial. In particular, detecting their largest overlap, i.e., their largest common subtable, is a computationally challenging problem. As the information overlap may not occur in contiguous portions of the tables, only the ability to permute columns and rows can reveal it. The detection of the largest overlap can help us in relevant tasks such as the discovery of multiple coexisting versions of the same table, which can present differences in the completeness and correctness of the conveyed information. Automatically detecting these highly similar, matching tables would allow us to guarantee their consistency through data cleaning or change propagation, but also to eliminate redundancy to free up storage space or to save additional work for the editors. We present the first formal definition of this problem, and with it Sloth, our solution to efficiently detect the largest overlap between two tables. We experimentally demonstrate on real-world datasets its efficacy in solving this task, analyzing its performance and showing its impact on multiple use cases. |
---|---|
ISSN: | 2836-6573 2836-6573 |
DOI: | 10.1145/3639303 |