ASM: Harmonizing Autoregressive Model, Sampling, and Multi-dimensional Statistics Merging for Cardinality Estimation
Recent efforts in learned cardinality estimation (CE) have substantially improved estimation accuracy and query plans inside query optimizers. However, achieving decent efficiency, scalability, and the support of a wide range of queries at the same time, has remained questionable. Rather than fallin...
Gespeichert in:
Veröffentlicht in: | Proceedings of the ACM on management of data 2024-03, Vol.2 (1), p.1-27, Article 45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent efforts in learned cardinality estimation (CE) have substantially improved estimation accuracy and query plans inside query optimizers. However, achieving decent efficiency, scalability, and the support of a wide range of queries at the same time, has remained questionable. Rather than falling back to traditional approaches to trade off one criterion with another, we present a new learned approach that achieves all these. Our method, called ASM, harmonizes autoregressive models for per-table statistics estimation, sampling for merging these statistics for join queries, and multi-dimensional statistics merging that extends the sampling for estimating thousands of sub-queries, without assuming independence between join keys. Extensive experiments show that ASM significantly improves query plans under a similar or smaller overhead than the previous learned methods and supports a wider range of queries. |
---|---|
ISSN: | 2836-6573 2836-6573 |
DOI: | 10.1145/3639300 |