Solving Infinite-State Games via Acceleration
Two-player graph games have found numerous applications, most notably in the synthesis of reactive systems from temporal specifications, but also in verification. The relevance of infinite-state systems in these areas has lead to significant attention towards developing techniques for solving infini...
Gespeichert in:
Veröffentlicht in: | Proceedings of ACM on programming languages 2024-01, Vol.8 (POPL), p.1696-1726, Article 57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-player graph games have found numerous applications, most notably in the synthesis of reactive systems from temporal specifications, but also in verification. The relevance of infinite-state systems in these areas has lead to significant attention towards developing techniques for solving infinite-state games. We propose novel symbolic semi-algorithms for solving infinite-state games with temporal winning conditions. The novelty of our approach lies in the introduction of an acceleration technique that enhances fixpoint-based game-solving methods and helps to avoid divergence. Classical fixpoint-based algorithms, when applied to infinite-state games, are bound to diverge in many cases, since they iteratively compute the set of states from which one player has a winning strategy. Our proposed approach can lead to convergence in cases where existing algorithms require an infinite number of iterations. This is achieved by acceleration: computing an infinite set of states from which a simpler sub-strategy can be iterated an unbounded number of times in order to win the game. Ours is the first method for solving infinite-state games to employ acceleration. Thanks to this, it is able to outperform state-of-the-art techniques on a range of benchmarks, as evidenced by our evaluation of a prototype implementation. |
---|---|
ISSN: | 2475-1421 2475-1421 |
DOI: | 10.1145/3632899 |