Put Your Voice on Stage: Personalized Headline Generation for News Articles
In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an app...
Gespeichert in:
Veröffentlicht in: | ACM transactions on knowledge discovery from data 2023-12, Vol.18 (3), p.1-20, Article 54 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | ACM transactions on knowledge discovery from data |
container_volume | 18 |
creator | Ao, Xiang Luo, Ling Wang, Xiting Yang, Zhao Chen, Jiun-Hung Qiao, Ying He, Qing Xie, Xing |
description | In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an approach named PNG (Personalized News headline Generator) by utilizing distant supervision in readers’ past click behaviors to resolve. First, user preference representations are learned through a knowledge-aware user encoder that comprehensively captures the genuine, sequential, and flash interests of users reflected in their historical clicked news. Then, a user-perturbed pointer-generator network is devised to accomplish the headline generation in which the learned user representations implicitly affect the word prediction. The proposed model is optimized by reinforcement learning solvers where indicators on factual, personalized, and linguistic aspects of the generated headline are regarded as rewards. Extensive experiments are conducted on the real-world dataset PENS,1 which is a large-scale benchmark collected from Microsoft News. Both the quantitative and qualitative results validate the effectiveness of our approach. |
doi_str_mv | 10.1145/3629168 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3629168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3629168</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-9cd2ae3b9a31b7145adc286bc81c6496d4f232bd9bef0935dc219cc54f801003</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKt495Sbp7V5ySbdeCtFW2nRgkX0tGSTF1nZbiTZIvrrXWnraQbmYxiGkEtgNwC5HAnFNajiiAxASpXlY_56fPCqgFNyltIHY1IC8AFZrLYdfQvbSF9CbZGGlj535h1v6QpjCq1p6h90dI7GNXWLdIYtRtPVPedDpI_4legkdrVtMJ2TE2-ahBd7HZL1_d16Os-WT7OH6WSZGS50l2nruEFRaSOgGveTjbO8UJUtwKpcK5d7LnjldIWeaSH7FLS1MvcFA8bEkFzvam0MKUX05WesNyZ-l8DKvwvK_QU9ebUjjd38Q4fwF5OcVco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Put Your Voice on Stage: Personalized Headline Generation for News Articles</title><source>ACM Digital Library</source><creator>Ao, Xiang ; Luo, Ling ; Wang, Xiting ; Yang, Zhao ; Chen, Jiun-Hung ; Qiao, Ying ; He, Qing ; Xie, Xing</creator><creatorcontrib>Ao, Xiang ; Luo, Ling ; Wang, Xiting ; Yang, Zhao ; Chen, Jiun-Hung ; Qiao, Ying ; He, Qing ; Xie, Xing</creatorcontrib><description>In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an approach named PNG (Personalized News headline Generator) by utilizing distant supervision in readers’ past click behaviors to resolve. First, user preference representations are learned through a knowledge-aware user encoder that comprehensively captures the genuine, sequential, and flash interests of users reflected in their historical clicked news. Then, a user-perturbed pointer-generator network is devised to accomplish the headline generation in which the learned user representations implicitly affect the word prediction. The proposed model is optimized by reinforcement learning solvers where indicators on factual, personalized, and linguistic aspects of the generated headline are regarded as rewards. Extensive experiments are conducted on the real-world dataset PENS,1 which is a large-scale benchmark collected from Microsoft News. Both the quantitative and qualitative results validate the effectiveness of our approach.</description><identifier>ISSN: 1556-4681</identifier><identifier>EISSN: 1556-472X</identifier><identifier>DOI: 10.1145/3629168</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Information systems ; Natural language generation ; Personalization</subject><ispartof>ACM transactions on knowledge discovery from data, 2023-12, Vol.18 (3), p.1-20, Article 54</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-9cd2ae3b9a31b7145adc286bc81c6496d4f232bd9bef0935dc219cc54f801003</cites><orcidid>0000-0001-5768-1095 ; 0000-0002-8608-8482 ; 0000-0002-6256-5272 ; 0000-0001-9633-8361 ; 0009-0006-1189-5139 ; 0000-0001-8833-5398 ; 0009-0003-4767-5494 ; 0000-0002-2129-9430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3629168$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Ao, Xiang</creatorcontrib><creatorcontrib>Luo, Ling</creatorcontrib><creatorcontrib>Wang, Xiting</creatorcontrib><creatorcontrib>Yang, Zhao</creatorcontrib><creatorcontrib>Chen, Jiun-Hung</creatorcontrib><creatorcontrib>Qiao, Ying</creatorcontrib><creatorcontrib>He, Qing</creatorcontrib><creatorcontrib>Xie, Xing</creatorcontrib><title>Put Your Voice on Stage: Personalized Headline Generation for News Articles</title><title>ACM transactions on knowledge discovery from data</title><addtitle>ACM TKDD</addtitle><description>In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an approach named PNG (Personalized News headline Generator) by utilizing distant supervision in readers’ past click behaviors to resolve. First, user preference representations are learned through a knowledge-aware user encoder that comprehensively captures the genuine, sequential, and flash interests of users reflected in their historical clicked news. Then, a user-perturbed pointer-generator network is devised to accomplish the headline generation in which the learned user representations implicitly affect the word prediction. The proposed model is optimized by reinforcement learning solvers where indicators on factual, personalized, and linguistic aspects of the generated headline are regarded as rewards. Extensive experiments are conducted on the real-world dataset PENS,1 which is a large-scale benchmark collected from Microsoft News. Both the quantitative and qualitative results validate the effectiveness of our approach.</description><subject>Computing methodologies</subject><subject>Information systems</subject><subject>Natural language generation</subject><subject>Personalization</subject><issn>1556-4681</issn><issn>1556-472X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKt495Sbp7V5ySbdeCtFW2nRgkX0tGSTF1nZbiTZIvrrXWnraQbmYxiGkEtgNwC5HAnFNajiiAxASpXlY_56fPCqgFNyltIHY1IC8AFZrLYdfQvbSF9CbZGGlj535h1v6QpjCq1p6h90dI7GNXWLdIYtRtPVPedDpI_4legkdrVtMJ2TE2-ahBd7HZL1_d16Os-WT7OH6WSZGS50l2nruEFRaSOgGveTjbO8UJUtwKpcK5d7LnjldIWeaSH7FLS1MvcFA8bEkFzvam0MKUX05WesNyZ-l8DKvwvK_QU9ebUjjd38Q4fwF5OcVco</recordid><startdate>20231209</startdate><enddate>20231209</enddate><creator>Ao, Xiang</creator><creator>Luo, Ling</creator><creator>Wang, Xiting</creator><creator>Yang, Zhao</creator><creator>Chen, Jiun-Hung</creator><creator>Qiao, Ying</creator><creator>He, Qing</creator><creator>Xie, Xing</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5768-1095</orcidid><orcidid>https://orcid.org/0000-0002-8608-8482</orcidid><orcidid>https://orcid.org/0000-0002-6256-5272</orcidid><orcidid>https://orcid.org/0000-0001-9633-8361</orcidid><orcidid>https://orcid.org/0009-0006-1189-5139</orcidid><orcidid>https://orcid.org/0000-0001-8833-5398</orcidid><orcidid>https://orcid.org/0009-0003-4767-5494</orcidid><orcidid>https://orcid.org/0000-0002-2129-9430</orcidid></search><sort><creationdate>20231209</creationdate><title>Put Your Voice on Stage: Personalized Headline Generation for News Articles</title><author>Ao, Xiang ; Luo, Ling ; Wang, Xiting ; Yang, Zhao ; Chen, Jiun-Hung ; Qiao, Ying ; He, Qing ; Xie, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-9cd2ae3b9a31b7145adc286bc81c6496d4f232bd9bef0935dc219cc54f801003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing methodologies</topic><topic>Information systems</topic><topic>Natural language generation</topic><topic>Personalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ao, Xiang</creatorcontrib><creatorcontrib>Luo, Ling</creatorcontrib><creatorcontrib>Wang, Xiting</creatorcontrib><creatorcontrib>Yang, Zhao</creatorcontrib><creatorcontrib>Chen, Jiun-Hung</creatorcontrib><creatorcontrib>Qiao, Ying</creatorcontrib><creatorcontrib>He, Qing</creatorcontrib><creatorcontrib>Xie, Xing</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on knowledge discovery from data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ao, Xiang</au><au>Luo, Ling</au><au>Wang, Xiting</au><au>Yang, Zhao</au><au>Chen, Jiun-Hung</au><au>Qiao, Ying</au><au>He, Qing</au><au>Xie, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Put Your Voice on Stage: Personalized Headline Generation for News Articles</atitle><jtitle>ACM transactions on knowledge discovery from data</jtitle><stitle>ACM TKDD</stitle><date>2023-12-09</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>54</artnum><issn>1556-4681</issn><eissn>1556-472X</eissn><abstract>In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an approach named PNG (Personalized News headline Generator) by utilizing distant supervision in readers’ past click behaviors to resolve. First, user preference representations are learned through a knowledge-aware user encoder that comprehensively captures the genuine, sequential, and flash interests of users reflected in their historical clicked news. Then, a user-perturbed pointer-generator network is devised to accomplish the headline generation in which the learned user representations implicitly affect the word prediction. The proposed model is optimized by reinforcement learning solvers where indicators on factual, personalized, and linguistic aspects of the generated headline are regarded as rewards. Extensive experiments are conducted on the real-world dataset PENS,1 which is a large-scale benchmark collected from Microsoft News. Both the quantitative and qualitative results validate the effectiveness of our approach.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3629168</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5768-1095</orcidid><orcidid>https://orcid.org/0000-0002-8608-8482</orcidid><orcidid>https://orcid.org/0000-0002-6256-5272</orcidid><orcidid>https://orcid.org/0000-0001-9633-8361</orcidid><orcidid>https://orcid.org/0009-0006-1189-5139</orcidid><orcidid>https://orcid.org/0000-0001-8833-5398</orcidid><orcidid>https://orcid.org/0009-0003-4767-5494</orcidid><orcidid>https://orcid.org/0000-0002-2129-9430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-4681 |
ispartof | ACM transactions on knowledge discovery from data, 2023-12, Vol.18 (3), p.1-20, Article 54 |
issn | 1556-4681 1556-472X |
language | eng |
recordid | cdi_crossref_primary_10_1145_3629168 |
source | ACM Digital Library |
subjects | Computing methodologies Information systems Natural language generation Personalization |
title | Put Your Voice on Stage: Personalized Headline Generation for News Articles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Put%20Your%20Voice%20on%20Stage:%20Personalized%20Headline%20Generation%20for%20News%20Articles&rft.jtitle=ACM%20transactions%20on%20knowledge%20discovery%20from%20data&rft.au=Ao,%20Xiang&rft.date=2023-12-09&rft.volume=18&rft.issue=3&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=54&rft.issn=1556-4681&rft.eissn=1556-472X&rft_id=info:doi/10.1145/3629168&rft_dat=%3Cacm_cross%3E3629168%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |