Put Your Voice on Stage: Personalized Headline Generation for News Articles

In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on knowledge discovery from data 2023-12, Vol.18 (3), p.1-20, Article 54
Hauptverfasser: Ao, Xiang, Luo, Ling, Wang, Xiting, Yang, Zhao, Chen, Jiun-Hung, Qiao, Ying, He, Qing, Xie, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 3
container_start_page 1
container_title ACM transactions on knowledge discovery from data
container_volume 18
creator Ao, Xiang
Luo, Ling
Wang, Xiting
Yang, Zhao
Chen, Jiun-Hung
Qiao, Ying
He, Qing
Xie, Xing
description In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an approach named PNG (Personalized News headline Generator) by utilizing distant supervision in readers’ past click behaviors to resolve. First, user preference representations are learned through a knowledge-aware user encoder that comprehensively captures the genuine, sequential, and flash interests of users reflected in their historical clicked news. Then, a user-perturbed pointer-generator network is devised to accomplish the headline generation in which the learned user representations implicitly affect the word prediction. The proposed model is optimized by reinforcement learning solvers where indicators on factual, personalized, and linguistic aspects of the generated headline are regarded as rewards. Extensive experiments are conducted on the real-world dataset PENS,1 which is a large-scale benchmark collected from Microsoft News. Both the quantitative and qualitative results validate the effectiveness of our approach.
doi_str_mv 10.1145/3629168
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3629168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3629168</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-9cd2ae3b9a31b7145adc286bc81c6496d4f232bd9bef0935dc219cc54f801003</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKt495Sbp7V5ySbdeCtFW2nRgkX0tGSTF1nZbiTZIvrrXWnraQbmYxiGkEtgNwC5HAnFNajiiAxASpXlY_56fPCqgFNyltIHY1IC8AFZrLYdfQvbSF9CbZGGlj535h1v6QpjCq1p6h90dI7GNXWLdIYtRtPVPedDpI_4legkdrVtMJ2TE2-ahBd7HZL1_d16Os-WT7OH6WSZGS50l2nruEFRaSOgGveTjbO8UJUtwKpcK5d7LnjldIWeaSH7FLS1MvcFA8bEkFzvam0MKUX05WesNyZ-l8DKvwvK_QU9ebUjjd38Q4fwF5OcVco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Put Your Voice on Stage: Personalized Headline Generation for News Articles</title><source>ACM Digital Library</source><creator>Ao, Xiang ; Luo, Ling ; Wang, Xiting ; Yang, Zhao ; Chen, Jiun-Hung ; Qiao, Ying ; He, Qing ; Xie, Xing</creator><creatorcontrib>Ao, Xiang ; Luo, Ling ; Wang, Xiting ; Yang, Zhao ; Chen, Jiun-Hung ; Qiao, Ying ; He, Qing ; Xie, Xing</creatorcontrib><description>In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an approach named PNG (Personalized News headline Generator) by utilizing distant supervision in readers’ past click behaviors to resolve. First, user preference representations are learned through a knowledge-aware user encoder that comprehensively captures the genuine, sequential, and flash interests of users reflected in their historical clicked news. Then, a user-perturbed pointer-generator network is devised to accomplish the headline generation in which the learned user representations implicitly affect the word prediction. The proposed model is optimized by reinforcement learning solvers where indicators on factual, personalized, and linguistic aspects of the generated headline are regarded as rewards. Extensive experiments are conducted on the real-world dataset PENS,1 which is a large-scale benchmark collected from Microsoft News. Both the quantitative and qualitative results validate the effectiveness of our approach.</description><identifier>ISSN: 1556-4681</identifier><identifier>EISSN: 1556-472X</identifier><identifier>DOI: 10.1145/3629168</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Information systems ; Natural language generation ; Personalization</subject><ispartof>ACM transactions on knowledge discovery from data, 2023-12, Vol.18 (3), p.1-20, Article 54</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-9cd2ae3b9a31b7145adc286bc81c6496d4f232bd9bef0935dc219cc54f801003</cites><orcidid>0000-0001-5768-1095 ; 0000-0002-8608-8482 ; 0000-0002-6256-5272 ; 0000-0001-9633-8361 ; 0009-0006-1189-5139 ; 0000-0001-8833-5398 ; 0009-0003-4767-5494 ; 0000-0002-2129-9430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3629168$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Ao, Xiang</creatorcontrib><creatorcontrib>Luo, Ling</creatorcontrib><creatorcontrib>Wang, Xiting</creatorcontrib><creatorcontrib>Yang, Zhao</creatorcontrib><creatorcontrib>Chen, Jiun-Hung</creatorcontrib><creatorcontrib>Qiao, Ying</creatorcontrib><creatorcontrib>He, Qing</creatorcontrib><creatorcontrib>Xie, Xing</creatorcontrib><title>Put Your Voice on Stage: Personalized Headline Generation for News Articles</title><title>ACM transactions on knowledge discovery from data</title><addtitle>ACM TKDD</addtitle><description>In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an approach named PNG (Personalized News headline Generator) by utilizing distant supervision in readers’ past click behaviors to resolve. First, user preference representations are learned through a knowledge-aware user encoder that comprehensively captures the genuine, sequential, and flash interests of users reflected in their historical clicked news. Then, a user-perturbed pointer-generator network is devised to accomplish the headline generation in which the learned user representations implicitly affect the word prediction. The proposed model is optimized by reinforcement learning solvers where indicators on factual, personalized, and linguistic aspects of the generated headline are regarded as rewards. Extensive experiments are conducted on the real-world dataset PENS,1 which is a large-scale benchmark collected from Microsoft News. Both the quantitative and qualitative results validate the effectiveness of our approach.</description><subject>Computing methodologies</subject><subject>Information systems</subject><subject>Natural language generation</subject><subject>Personalization</subject><issn>1556-4681</issn><issn>1556-472X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKt495Sbp7V5ySbdeCtFW2nRgkX0tGSTF1nZbiTZIvrrXWnraQbmYxiGkEtgNwC5HAnFNajiiAxASpXlY_56fPCqgFNyltIHY1IC8AFZrLYdfQvbSF9CbZGGlj535h1v6QpjCq1p6h90dI7GNXWLdIYtRtPVPedDpI_4legkdrVtMJ2TE2-ahBd7HZL1_d16Os-WT7OH6WSZGS50l2nruEFRaSOgGveTjbO8UJUtwKpcK5d7LnjldIWeaSH7FLS1MvcFA8bEkFzvam0MKUX05WesNyZ-l8DKvwvK_QU9ebUjjd38Q4fwF5OcVco</recordid><startdate>20231209</startdate><enddate>20231209</enddate><creator>Ao, Xiang</creator><creator>Luo, Ling</creator><creator>Wang, Xiting</creator><creator>Yang, Zhao</creator><creator>Chen, Jiun-Hung</creator><creator>Qiao, Ying</creator><creator>He, Qing</creator><creator>Xie, Xing</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5768-1095</orcidid><orcidid>https://orcid.org/0000-0002-8608-8482</orcidid><orcidid>https://orcid.org/0000-0002-6256-5272</orcidid><orcidid>https://orcid.org/0000-0001-9633-8361</orcidid><orcidid>https://orcid.org/0009-0006-1189-5139</orcidid><orcidid>https://orcid.org/0000-0001-8833-5398</orcidid><orcidid>https://orcid.org/0009-0003-4767-5494</orcidid><orcidid>https://orcid.org/0000-0002-2129-9430</orcidid></search><sort><creationdate>20231209</creationdate><title>Put Your Voice on Stage: Personalized Headline Generation for News Articles</title><author>Ao, Xiang ; Luo, Ling ; Wang, Xiting ; Yang, Zhao ; Chen, Jiun-Hung ; Qiao, Ying ; He, Qing ; Xie, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-9cd2ae3b9a31b7145adc286bc81c6496d4f232bd9bef0935dc219cc54f801003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing methodologies</topic><topic>Information systems</topic><topic>Natural language generation</topic><topic>Personalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ao, Xiang</creatorcontrib><creatorcontrib>Luo, Ling</creatorcontrib><creatorcontrib>Wang, Xiting</creatorcontrib><creatorcontrib>Yang, Zhao</creatorcontrib><creatorcontrib>Chen, Jiun-Hung</creatorcontrib><creatorcontrib>Qiao, Ying</creatorcontrib><creatorcontrib>He, Qing</creatorcontrib><creatorcontrib>Xie, Xing</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on knowledge discovery from data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ao, Xiang</au><au>Luo, Ling</au><au>Wang, Xiting</au><au>Yang, Zhao</au><au>Chen, Jiun-Hung</au><au>Qiao, Ying</au><au>He, Qing</au><au>Xie, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Put Your Voice on Stage: Personalized Headline Generation for News Articles</atitle><jtitle>ACM transactions on knowledge discovery from data</jtitle><stitle>ACM TKDD</stitle><date>2023-12-09</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>54</artnum><issn>1556-4681</issn><eissn>1556-472X</eissn><abstract>In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an approach named PNG (Personalized News headline Generator) by utilizing distant supervision in readers’ past click behaviors to resolve. First, user preference representations are learned through a knowledge-aware user encoder that comprehensively captures the genuine, sequential, and flash interests of users reflected in their historical clicked news. Then, a user-perturbed pointer-generator network is devised to accomplish the headline generation in which the learned user representations implicitly affect the word prediction. The proposed model is optimized by reinforcement learning solvers where indicators on factual, personalized, and linguistic aspects of the generated headline are regarded as rewards. Extensive experiments are conducted on the real-world dataset PENS,1 which is a large-scale benchmark collected from Microsoft News. Both the quantitative and qualitative results validate the effectiveness of our approach.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3629168</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5768-1095</orcidid><orcidid>https://orcid.org/0000-0002-8608-8482</orcidid><orcidid>https://orcid.org/0000-0002-6256-5272</orcidid><orcidid>https://orcid.org/0000-0001-9633-8361</orcidid><orcidid>https://orcid.org/0009-0006-1189-5139</orcidid><orcidid>https://orcid.org/0000-0001-8833-5398</orcidid><orcidid>https://orcid.org/0009-0003-4767-5494</orcidid><orcidid>https://orcid.org/0000-0002-2129-9430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-4681
ispartof ACM transactions on knowledge discovery from data, 2023-12, Vol.18 (3), p.1-20, Article 54
issn 1556-4681
1556-472X
language eng
recordid cdi_crossref_primary_10_1145_3629168
source ACM Digital Library
subjects Computing methodologies
Information systems
Natural language generation
Personalization
title Put Your Voice on Stage: Personalized Headline Generation for News Articles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Put%20Your%20Voice%20on%20Stage:%20Personalized%20Headline%20Generation%20for%20News%20Articles&rft.jtitle=ACM%20transactions%20on%20knowledge%20discovery%20from%20data&rft.au=Ao,%20Xiang&rft.date=2023-12-09&rft.volume=18&rft.issue=3&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=54&rft.issn=1556-4681&rft.eissn=1556-472X&rft_id=info:doi/10.1145/3629168&rft_dat=%3Cacm_cross%3E3629168%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true