Put Your Voice on Stage: Personalized Headline Generation for News Articles
In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an app...
Gespeichert in:
Veröffentlicht in: | ACM transactions on knowledge discovery from data 2023-12, Vol.18 (3), p.1-20, Article 54 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the problem of personalized news headline generation, which aims to produce not only concise and fact-consistent titles for news articles but also decorate these titles as personalized irresistible reading invitations by incorporating readers’ preferences. We propose an approach named PNG (Personalized News headline Generator) by utilizing distant supervision in readers’ past click behaviors to resolve. First, user preference representations are learned through a knowledge-aware user encoder that comprehensively captures the genuine, sequential, and flash interests of users reflected in their historical clicked news. Then, a user-perturbed pointer-generator network is devised to accomplish the headline generation in which the learned user representations implicitly affect the word prediction. The proposed model is optimized by reinforcement learning solvers where indicators on factual, personalized, and linguistic aspects of the generated headline are regarded as rewards. Extensive experiments are conducted on the real-world dataset PENS,1 which is a large-scale benchmark collected from Microsoft News. Both the quantitative and qualitative results validate the effectiveness of our approach. |
---|---|
ISSN: | 1556-4681 1556-472X |
DOI: | 10.1145/3629168 |