Modular Data Plane Verification for Compositional Networks

Modern networks are increasingly using layering and bridging to form a compositional architecture. Layering protocols like VXLAN create multiple overlay networks on top of a single underlay network infrastructure. This makes network configurations even more complex, and error-prone. To check the cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The proceedings of the ACM on networking 2023-11, Vol.1 (CoNEXT3), p.1-22, Article 23
Hauptverfasser: Liu, Xu, Zhang, Peng, Li, Hao, Sun, Wenbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern networks are increasingly using layering and bridging to form a compositional architecture. Layering protocols like VXLAN create multiple overlay networks on top of a single underlay network infrastructure. This makes network configurations even more complex, and error-prone. To check the correctness of such compositional networks, one needs to model the dependency across multiple layers (underlay and overlay) and multiple domains (different VPNs/VPCs). Existing verifiers, which are optimized to scale in single-layer single-domain networks, exhibit scalability limitations when applied to compositional networks. This paper proposes MNV, a modular network verifier that scales to large compositional networks. At its core is a new verification method termed decompose-merge reasoning, which decomposes the network into self-contained modules, verifies each module independently, and merges the verification results. Our experiments show that for a typical data center network virtualized with VXLAN, to check reachability for more than 100 million pairs of subnets, MNV is at least 100x faster than state-of-the-art tools.
ISSN:2834-5509
2834-5509
DOI:10.1145/3629145