MHANER: A Multi-source Heterogeneous Graph Attention Network for Explainable Recommendation in Online Games

Recommender system helps address information overload problem and satisfy consumers’ personalized requirement in many applications such as e-commerce, social networks, and in-game store. However, existing approaches mainly focus on improving the accuracy of recommendation tasks but usually ignore ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on intelligent systems and technology 2024-08, Vol.15 (4), p.1-23, Article 85
Hauptverfasser: Yu, Dongjin, Wang, Xingliang, Xiong, Yu, Shen, Xudong, Wu, Runze, Wang, Dongjing, Zou, Zhene, Xu, Guandong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recommender system helps address information overload problem and satisfy consumers’ personalized requirement in many applications such as e-commerce, social networks, and in-game store. However, existing approaches mainly focus on improving the accuracy of recommendation tasks but usually ignore how to improve the interpretability of recommendation, which is still a challenging and crucial task, especially for some complicated scenarios such as large-scale online games. A few previous attempts on explainable recommendation mostly depend on a large amount of a priori knowledge or user-provided review corpus, which is labor consuming as well as often suffers from data deficiency. To relieve this issue, we propose a Multi-source Heterogeneous Graph Attention Network for Explainable Recommendation (MHANER) for the case without enough a priori knowledge or corpus of user comments. Specifically, MHANER employs the attention mechanism to model players’ preference to in-game store items as the support for the explanation of recommendation. Then a graph neural network–based method is designed to model players’ multi-source heterogeneous information, including the players’ historical behavior data, historical purchase data, and attributes of the player-controlled character, which is leveraged to recommend possible items for players to buy. Finally, the multi-level subgraph pattern mining is adopted to combine the characteristics of a recommendation list to generate corresponding explanations of items. Extensive experiments on three real-world datasets, two collected from JD and one from NetEase game, demonstrate that the proposed model MHANER outperforms state-of-the-art baselines. Moreover, the generated explanations are verified by human encoding comprised of hard-core game players and endorsed by experts from game developers.
ISSN:2157-6904
2157-6912
DOI:10.1145/3626243