WARM-tree: Making Quadtrees Write-efficient and Space-economic on Persistent Memories

Recently, the value of data has been widely recognized, which highlights the significance of data-centric computing in diversified application scenarios. In many cases, the data are multidimensional, and the management of multidimensional data often confronts greater challenges in supporting efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on embedded computing systems 2023-09, Vol.22 (5s), p.1-26, Article 119
Hauptverfasser: Wu, Shin-Ting, Chen, Liang-Chi, Huang, Po-Chun, Chang, Yuan-Hao, Ho, Chien-Chung, Shih, Wei-Kuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, the value of data has been widely recognized, which highlights the significance of data-centric computing in diversified application scenarios. In many cases, the data are multidimensional, and the management of multidimensional data often confronts greater challenges in supporting efficient data access operations and guaranteeing the space utilization. On the other hand, while many existing index data structures have been proposed for multidimensional data management, however, their designs are not fully optimized for modern nonvolatile memories, in particular the byte-addressable persistent memories. As a result, they might undergo serious access performance degradation or fail to guarantee space utilization. This observation motivates the redesigning of index data structures for multidimensional point data on modern persistent memories, such as the phase-change memory. In this work, we present the WARM-tree, a multidimensional tree for reducing the write amplification effect, for multidimensional point data. In our evaluation studies, as compared to the bucket PR quadtree and R*-tree, the WARM-tree can provide any worst-case space utilization guarantees in the form of \(\frac{m-1}{m}\) (m∈ ℤ^+) and effectively reduces the write traffic of key insertions by up to 48.10% and 85.86%, respectively, at the price of degraded average space utilization and prolonged latency of query operations. This suggests that the WARM-tree is a potential multidimensional index structure for insert-intensive workloads.
ISSN:1539-9087
1558-3465
DOI:10.1145/3608033