Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs

We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on algorithms 2023-06, Vol.19 (3), p.1-40, Article 26
1. Verfasser: Bressan, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 3
container_start_page 1
container_title ACM transactions on algorithms
container_volume 19
creator Bressan, Marco
description We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.
doi_str_mv 10.1145/3596495
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3596495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3596495</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-9c5f89b275cc5fdeb11f78f502826a48e62fbe9b7bb8e502bcda107773b16ef73</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqUgdiZvTAE_4tgeq6g8pIgOKXNkO9dpUF6yw8C_J6il0zk659PV1UHonpInSlPxzIXOUi0u0IqKVCcZ5_zy7Jm4RjcxfhHCNedqhYqt961rYZixGWr8ASYk4zS3venwpmvG0M6HPmI_BlyafuraocHlUnY4H4cB3Aw1Lr9tE8x0iLfoypsuwt1J1-jzZbvP35Ji9_qeb4rEMK7nRDvhlbZMCre4GiylXiovCFMsM6mCjHkL2kprFSypdbWhRErJLc3AS75Gj8e7LowxBvDVFJaPw09FSfU3QnUaYSEfjqRx_Rn6L38B0b5XXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs</title><source>ACM Digital Library</source><creator>Bressan, Marco</creator><creatorcontrib>Bressan, Marco</creatorcontrib><description>We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.</description><identifier>ISSN: 1549-6325</identifier><identifier>EISSN: 1549-6333</identifier><identifier>DOI: 10.1145/3596495</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Graph algorithms ; Mathematics of computing ; Random walks and Markov chains ; Streaming, sublinear and near linear time algorithms ; Theory of computation</subject><ispartof>ACM transactions on algorithms, 2023-06, Vol.19 (3), p.1-40, Article 26</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-9c5f89b275cc5fdeb11f78f502826a48e62fbe9b7bb8e502bcda107773b16ef73</cites><orcidid>0000-0001-5211-2264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3596495$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2280,27923,27924,40195,75999</link.rule.ids></links><search><creatorcontrib>Bressan, Marco</creatorcontrib><title>Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs</title><title>ACM transactions on algorithms</title><addtitle>ACM TALG</addtitle><description>We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.</description><subject>Graph algorithms</subject><subject>Mathematics of computing</subject><subject>Random walks and Markov chains</subject><subject>Streaming, sublinear and near linear time algorithms</subject><subject>Theory of computation</subject><issn>1549-6325</issn><issn>1549-6333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EEqUgdiZvTAE_4tgeq6g8pIgOKXNkO9dpUF6yw8C_J6il0zk659PV1UHonpInSlPxzIXOUi0u0IqKVCcZ5_zy7Jm4RjcxfhHCNedqhYqt961rYZixGWr8ASYk4zS3venwpmvG0M6HPmI_BlyafuraocHlUnY4H4cB3Aw1Lr9tE8x0iLfoypsuwt1J1-jzZbvP35Ji9_qeb4rEMK7nRDvhlbZMCre4GiylXiovCFMsM6mCjHkL2kprFSypdbWhRErJLc3AS75Gj8e7LowxBvDVFJaPw09FSfU3QnUaYSEfjqRx_Rn6L38B0b5XXw</recordid><startdate>20230624</startdate><enddate>20230624</enddate><creator>Bressan, Marco</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5211-2264</orcidid></search><sort><creationdate>20230624</creationdate><title>Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs</title><author>Bressan, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-9c5f89b275cc5fdeb11f78f502826a48e62fbe9b7bb8e502bcda107773b16ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Graph algorithms</topic><topic>Mathematics of computing</topic><topic>Random walks and Markov chains</topic><topic>Streaming, sublinear and near linear time algorithms</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bressan, Marco</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bressan, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs</atitle><jtitle>ACM transactions on algorithms</jtitle><stitle>ACM TALG</stitle><date>2023-06-24</date><risdate>2023</risdate><volume>19</volume><issue>3</issue><spage>1</spage><epage>40</epage><pages>1-40</pages><artnum>26</artnum><issn>1549-6325</issn><eissn>1549-6333</eissn><abstract>We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3596495</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0001-5211-2264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-6325
ispartof ACM transactions on algorithms, 2023-06, Vol.19 (3), p.1-40, Article 26
issn 1549-6325
1549-6333
language eng
recordid cdi_crossref_primary_10_1145_3596495
source ACM Digital Library
subjects Graph algorithms
Mathematics of computing
Random walks and Markov chains
Streaming, sublinear and near linear time algorithms
Theory of computation
title Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Near-optimal%20Algorithms%20for%20Sampling%20Small%20Connected%20Subgraphs&rft.jtitle=ACM%20transactions%20on%20algorithms&rft.au=Bressan,%20Marco&rft.date=2023-06-24&rft.volume=19&rft.issue=3&rft.spage=1&rft.epage=40&rft.pages=1-40&rft.artnum=26&rft.issn=1549-6325&rft.eissn=1549-6333&rft_id=info:doi/10.1145/3596495&rft_dat=%3Cacm_cross%3E3596495%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true