Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs
We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorith...
Gespeichert in:
Veröffentlicht in: | ACM transactions on algorithms 2023-06, Vol.19 (3), p.1-40, Article 26 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | ACM transactions on algorithms |
container_volume | 19 |
creator | Bressan, Marco |
description | We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling. |
doi_str_mv | 10.1145/3596495 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3596495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3596495</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-9c5f89b275cc5fdeb11f78f502826a48e62fbe9b7bb8e502bcda107773b16ef73</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqUgdiZvTAE_4tgeq6g8pIgOKXNkO9dpUF6yw8C_J6il0zk659PV1UHonpInSlPxzIXOUi0u0IqKVCcZ5_zy7Jm4RjcxfhHCNedqhYqt961rYZixGWr8ASYk4zS3venwpmvG0M6HPmI_BlyafuraocHlUnY4H4cB3Aw1Lr9tE8x0iLfoypsuwt1J1-jzZbvP35Ji9_qeb4rEMK7nRDvhlbZMCre4GiylXiovCFMsM6mCjHkL2kprFSypdbWhRErJLc3AS75Gj8e7LowxBvDVFJaPw09FSfU3QnUaYSEfjqRx_Rn6L38B0b5XXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs</title><source>ACM Digital Library</source><creator>Bressan, Marco</creator><creatorcontrib>Bressan, Marco</creatorcontrib><description>We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.</description><identifier>ISSN: 1549-6325</identifier><identifier>EISSN: 1549-6333</identifier><identifier>DOI: 10.1145/3596495</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Graph algorithms ; Mathematics of computing ; Random walks and Markov chains ; Streaming, sublinear and near linear time algorithms ; Theory of computation</subject><ispartof>ACM transactions on algorithms, 2023-06, Vol.19 (3), p.1-40, Article 26</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-9c5f89b275cc5fdeb11f78f502826a48e62fbe9b7bb8e502bcda107773b16ef73</cites><orcidid>0000-0001-5211-2264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3596495$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2280,27923,27924,40195,75999</link.rule.ids></links><search><creatorcontrib>Bressan, Marco</creatorcontrib><title>Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs</title><title>ACM transactions on algorithms</title><addtitle>ACM TALG</addtitle><description>We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.</description><subject>Graph algorithms</subject><subject>Mathematics of computing</subject><subject>Random walks and Markov chains</subject><subject>Streaming, sublinear and near linear time algorithms</subject><subject>Theory of computation</subject><issn>1549-6325</issn><issn>1549-6333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EEqUgdiZvTAE_4tgeq6g8pIgOKXNkO9dpUF6yw8C_J6il0zk659PV1UHonpInSlPxzIXOUi0u0IqKVCcZ5_zy7Jm4RjcxfhHCNedqhYqt961rYZixGWr8ASYk4zS3venwpmvG0M6HPmI_BlyafuraocHlUnY4H4cB3Aw1Lr9tE8x0iLfoypsuwt1J1-jzZbvP35Ji9_qeb4rEMK7nRDvhlbZMCre4GiylXiovCFMsM6mCjHkL2kprFSypdbWhRErJLc3AS75Gj8e7LowxBvDVFJaPw09FSfU3QnUaYSEfjqRx_Rn6L38B0b5XXw</recordid><startdate>20230624</startdate><enddate>20230624</enddate><creator>Bressan, Marco</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5211-2264</orcidid></search><sort><creationdate>20230624</creationdate><title>Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs</title><author>Bressan, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-9c5f89b275cc5fdeb11f78f502826a48e62fbe9b7bb8e502bcda107773b16ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Graph algorithms</topic><topic>Mathematics of computing</topic><topic>Random walks and Markov chains</topic><topic>Streaming, sublinear and near linear time algorithms</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bressan, Marco</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bressan, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs</atitle><jtitle>ACM transactions on algorithms</jtitle><stitle>ACM TALG</stitle><date>2023-06-24</date><risdate>2023</risdate><volume>19</volume><issue>3</issue><spage>1</spage><epage>40</epage><pages>1-40</pages><artnum>26</artnum><issn>1549-6325</issn><eissn>1549-6333</eissn><abstract>We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3596495</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0001-5211-2264</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-6325 |
ispartof | ACM transactions on algorithms, 2023-06, Vol.19 (3), p.1-40, Article 26 |
issn | 1549-6325 1549-6333 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3596495 |
source | ACM Digital Library |
subjects | Graph algorithms Mathematics of computing Random walks and Markov chains Streaming, sublinear and near linear time algorithms Theory of computation |
title | Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Near-optimal%20Algorithms%20for%20Sampling%20Small%20Connected%20Subgraphs&rft.jtitle=ACM%20transactions%20on%20algorithms&rft.au=Bressan,%20Marco&rft.date=2023-06-24&rft.volume=19&rft.issue=3&rft.spage=1&rft.epage=40&rft.pages=1-40&rft.artnum=26&rft.issn=1549-6325&rft.eissn=1549-6333&rft_id=info:doi/10.1145/3596495&rft_dat=%3Cacm_cross%3E3596495%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |