Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs
We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorith...
Gespeichert in:
Veröffentlicht in: | ACM transactions on algorithms 2023-06, Vol.19 (3), p.1-40, Article 26 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling. |
---|---|
ISSN: | 1549-6325 1549-6333 |
DOI: | 10.1145/3596495 |