DynamicRead: Exploring Robust Gaze Interaction Methods for Reading on Handheld Mobile Devices under Dynamic Conditions

Enabling gaze interaction in real-time on handheld mobile devices has attracted significant attention in recent years. An increasing number of research projects have focused on sophisticated appearance-based deep learning models to enhance the precision of gaze estimation on smartphones. This inspir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ACM on human-computer interaction 2023-05, Vol.7 (ETRA), p.1-17, Article 158
Hauptverfasser: Lei, Yaxiong, Wang, Yuheng, Caslin, Tyler, Wisowaty, Alexander, Zhu, Xu, Khamis, Mohamed, Ye, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enabling gaze interaction in real-time on handheld mobile devices has attracted significant attention in recent years. An increasing number of research projects have focused on sophisticated appearance-based deep learning models to enhance the precision of gaze estimation on smartphones. This inspires important research questions, including how the gaze can be used in a real-time application, and what type of gaze interaction methods are preferable under dynamic conditions in terms of both user acceptance and delivering reliable performance. To address these questions, we design four types of gaze scrolling techniques: three explicit technique based on Gaze Gesture, Dwell time, and Pursuit; and one implicit technique based on reading speed to support touch-free, page-scrolling on a reading application. We conduct a 20-participant user study under both sitting and walking settings and our results reveal that Gaze Gesture and Dwell time-based interfaces are more robust while walking and Gaze Gesture has achieved consistently good scores on usability while not causing high cognitive workload.
ISSN:2573-0142
2573-0142
DOI:10.1145/3591127