Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches

Finding cohesive subgraphs from a bipartite graph is a fundamental operator in bipartite graph analysis. In this paper, we focus on the problem of mining cohesive subgraphs from a bipartite graph that satisfy a hereditary property. Here a cohesive subgraph meets the hereditary property if all of its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ACM on management of data 2023-06, Vol.1 (2), p.1-26, Article 138
Hauptverfasser: Dai, Qiangqiang, Li, Rong-Hua, Ye, Xiaowei, Liao, Meihao, Zhang, Weipeng, Wang, Guoren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finding cohesive subgraphs from a bipartite graph is a fundamental operator in bipartite graph analysis. In this paper, we focus on the problem of mining cohesive subgraphs from a bipartite graph that satisfy a hereditary property. Here a cohesive subgraph meets the hereditary property if all of its subgraphs satisfy the same property as itself. We show that several important cohesive subgraph models, such as maximal biclique and maximal k-biplex, satisfy the hereditary property. The problem of enumerating all maximal hereditary subgraphs was known to be NP-hard. To solve this problem, we first propose a novel and general pivot-based enumeration framework to efficiently enumerate all maximal hereditary subgraphs in a bipartite graph. Then, based on our general framework, we develop a new pivot-based algorithm with several pruning techniques to enumerate all maximal bicliques. We prove that the worst-case time complexity of our pivot-based maximal biclique enumeration algorithm is O(m x 2n/2 ) (or O(m\times 1.414^n)) which is near optimal since there exist up to O(2n/2 ) maximal bicliques in a bipartite graph with n vertices and m edges. Moreover, we also show that our algorithm can achieve polynomial-delay time complexity with a slight modification. Third, on the basis of our general framework, we also devise a novel pivot-based algorithm with several non-trivial pruning techniques to enumerate maximal k-biplexes in a bipartite graph. Finally, we conduct extensive experiments using 11 real-world bipartite graphs to evaluate the proposed algorithms. The results show that our pivot-based solutions can achieve one order of magnitude (three orders of magnitude) faster than the state-of-the-art maximal biclique enumeration algorithms (maximal k-biplex enumeration algorithms).
ISSN:2836-6573
2836-6573
DOI:10.1145/3589283