DisPad: Flexible On-Body Displacement of Fabric Sensors for Robust Joint-Motion Tracking

The last few decades have witnessed an emerging trend of wearable soft sensors; however, there are important signal-processing challenges for soft sensors that still limit their practical deployment. They are error-prone when displaced, resulting in significant deviations from their ideal sensor out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on interactive, mobile, wearable and ubiquitous technologies mobile, wearable and ubiquitous technologies, 2023-03, Vol.7 (1), p.1-27, Article 5
Hauptverfasser: Chen, Xiaowei, Jiang, Xiao, Fang, Jiawei, Guo, Shihui, Lin, Juncong, Liao, Minghong, Luo, Guoliang, Fu, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The last few decades have witnessed an emerging trend of wearable soft sensors; however, there are important signal-processing challenges for soft sensors that still limit their practical deployment. They are error-prone when displaced, resulting in significant deviations from their ideal sensor output. In this work, we propose a novel prototype that integrates an elbow pad with a sparse network of soft sensors. Our prototype is fully bio-compatible, stretchable, and wearable. We develop a learning-based method to predict the elbow orientation angle and achieve an average tracking error of 9.82 degrees for single-user multi-motion experiments. With transfer learning, our method achieves the average tracking errors of 10.98 degrees and 11.81 degrees across different motion types and users, respectively. Our core contributions lie in a solution that realizes robust and stable human joint motion tracking across different device displacements.
ISSN:2474-9567
2474-9567
DOI:10.1145/3580832