Computer Vision-based Analysis of Buildings and Built Environments: A Systematic Review of Current Approaches

Analysing 88 sources published from 2011 to 2021, this article presents a first systematic review of the computer vision-based analysis of buildings and the built environment. Its aim is to assess the potential of this research for architectural studies and the implications of a shift to a cross-dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2023-07, Vol.55 (13s), p.1-25, Article 284
Hauptverfasser: Starzyńska-Grześ, Małgorzata B., Roussel, Robin, Jacoby, Sam, Asadipour, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analysing 88 sources published from 2011 to 2021, this article presents a first systematic review of the computer vision-based analysis of buildings and the built environment. Its aim is to assess the potential of this research for architectural studies and the implications of a shift to a cross-disciplinarity approach between architecture and computer science for research problems, aims, processes, and applications. To this end, the types of algorithms and data sources used in the reviewed studies are discussed in respect to architectural applications such as a building classification, detail classification, qualitative environmental analysis, building condition survey, and building value estimation. Based on this, current research gaps and trends are identified, with two main research aims emerging. First, studies that use or optimise computer vision methods to automate time-consuming, labour-intensive, or complex tasks when analysing architectural image data. Second, work that explores the methodological benefits of machine learning approaches to overcome limitations of conventional analysis to investigate new questions about the built environment by finding patterns and relationships among visual, statistical, and qualitative data. The growing body of research offers new methods to architectural and design studies, with the article identifying future challenges and directions of research.
ISSN:0360-0300
1557-7341
DOI:10.1145/3578552