Channel Attention TextCNN with Feature Word Extraction for Chinese Sentiment Analysis

Chinese short text sentiment analysis can help understand society’s views on various hot topics. Many existing sentiment analysis methods are based on sentiment dictionaries. Still, sentiment dictionaries are easily affected by subjective factors. They require a lot of time to build as well as maint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on Asian and low-resource language information processing 2023-03, Vol.22 (4), p.1-23, Article 100
Hauptverfasser: Liu, Jiangwei, Yan, Zian, Chen, Sibao, Sun, Xiao, Luo, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 4
container_start_page 1
container_title ACM transactions on Asian and low-resource language information processing
container_volume 22
creator Liu, Jiangwei
Yan, Zian
Chen, Sibao
Sun, Xiao
Luo, Bin
description Chinese short text sentiment analysis can help understand society’s views on various hot topics. Many existing sentiment analysis methods are based on sentiment dictionaries. Still, sentiment dictionaries are easily affected by subjective factors. They require a lot of time to build as well as maintenance to prevent obsolescence. For the aim of extracting rich information within texts more effectively, we propose a Channel Attention TextCNN with Feature Word Extraction model (CAT-FWE). The feature word extraction module helps us choose words that affect the sentiment of reviews. Then, these words are integrated with multi-level semantic information to enhance the information of sentences. In addition, the channel attention textCNN module that is a promotion of traditional TextCNN tends to pay more attention to those meaningful features. It eliminates the impacts of features that do not make any sense effectively. We apply our CAT-FWE model to both fine-grained classification and binary classification tasks for Chinese short texts. Experiment results show that it can improve the performance of emotion recognition.
doi_str_mv 10.1145/3571716
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3571716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3571716</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-6336da351a91e340c3ba954d680c7ed9cd28c520a8dd4d719f307e9a407addc23</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EElWp2Jm8MQX8FTseo6gFpKoMtGKMDttRghIH2Ua0_56Wtiz3nvQ-d8OD0C0lD5SK_JHniioqL9CEcZVnQhF2ed6l1tdoFuMnIYQKJSWhE7SpWvDe9bhMyfnUjR6v3TZVqxX-6VKLFw7Sd3D4fQwWz7cpgPmDmjHgqu28iw6_HQ6H_cClh34Xu3iDrhroo5udcoo2i_m6es6Wr08vVbnMgHGdMsm5tMBzCpo6LojhH6BzYWVBjHJWG8sKkzMChbXCKqobTpTTIIgCaw3jU3R__GvCGGNwTf0VugHCrqakPgipT0L25N2RBDP8Q-fyF9VHWp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Channel Attention TextCNN with Feature Word Extraction for Chinese Sentiment Analysis</title><source>Access via ACM Digital Library</source><creator>Liu, Jiangwei ; Yan, Zian ; Chen, Sibao ; Sun, Xiao ; Luo, Bin</creator><creatorcontrib>Liu, Jiangwei ; Yan, Zian ; Chen, Sibao ; Sun, Xiao ; Luo, Bin</creatorcontrib><description>Chinese short text sentiment analysis can help understand society’s views on various hot topics. Many existing sentiment analysis methods are based on sentiment dictionaries. Still, sentiment dictionaries are easily affected by subjective factors. They require a lot of time to build as well as maintenance to prevent obsolescence. For the aim of extracting rich information within texts more effectively, we propose a Channel Attention TextCNN with Feature Word Extraction model (CAT-FWE). The feature word extraction module helps us choose words that affect the sentiment of reviews. Then, these words are integrated with multi-level semantic information to enhance the information of sentences. In addition, the channel attention textCNN module that is a promotion of traditional TextCNN tends to pay more attention to those meaningful features. It eliminates the impacts of features that do not make any sense effectively. We apply our CAT-FWE model to both fine-grained classification and binary classification tasks for Chinese short texts. Experiment results show that it can improve the performance of emotion recognition.</description><identifier>ISSN: 2375-4699</identifier><identifier>EISSN: 2375-4702</identifier><identifier>DOI: 10.1145/3571716</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Natural language processing</subject><ispartof>ACM transactions on Asian and low-resource language information processing, 2023-03, Vol.22 (4), p.1-23, Article 100</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-6336da351a91e340c3ba954d680c7ed9cd28c520a8dd4d719f307e9a407addc23</cites><orcidid>0000-0002-2447-5305 ; 0000-0003-4538-5146 ; 0000-0003-1481-0162 ; 0000-0001-9750-7032 ; 0000-0001-5948-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3571716$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Liu, Jiangwei</creatorcontrib><creatorcontrib>Yan, Zian</creatorcontrib><creatorcontrib>Chen, Sibao</creatorcontrib><creatorcontrib>Sun, Xiao</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><title>Channel Attention TextCNN with Feature Word Extraction for Chinese Sentiment Analysis</title><title>ACM transactions on Asian and low-resource language information processing</title><addtitle>ACM TALLIP</addtitle><description>Chinese short text sentiment analysis can help understand society’s views on various hot topics. Many existing sentiment analysis methods are based on sentiment dictionaries. Still, sentiment dictionaries are easily affected by subjective factors. They require a lot of time to build as well as maintenance to prevent obsolescence. For the aim of extracting rich information within texts more effectively, we propose a Channel Attention TextCNN with Feature Word Extraction model (CAT-FWE). The feature word extraction module helps us choose words that affect the sentiment of reviews. Then, these words are integrated with multi-level semantic information to enhance the information of sentences. In addition, the channel attention textCNN module that is a promotion of traditional TextCNN tends to pay more attention to those meaningful features. It eliminates the impacts of features that do not make any sense effectively. We apply our CAT-FWE model to both fine-grained classification and binary classification tasks for Chinese short texts. Experiment results show that it can improve the performance of emotion recognition.</description><subject>Computing methodologies</subject><subject>Natural language processing</subject><issn>2375-4699</issn><issn>2375-4702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EElWp2Jm8MQX8FTseo6gFpKoMtGKMDttRghIH2Ua0_56Wtiz3nvQ-d8OD0C0lD5SK_JHniioqL9CEcZVnQhF2ed6l1tdoFuMnIYQKJSWhE7SpWvDe9bhMyfnUjR6v3TZVqxX-6VKLFw7Sd3D4fQwWz7cpgPmDmjHgqu28iw6_HQ6H_cClh34Xu3iDrhroo5udcoo2i_m6es6Wr08vVbnMgHGdMsm5tMBzCpo6LojhH6BzYWVBjHJWG8sKkzMChbXCKqobTpTTIIgCaw3jU3R__GvCGGNwTf0VugHCrqakPgipT0L25N2RBDP8Q-fyF9VHWp4</recordid><startdate>20230324</startdate><enddate>20230324</enddate><creator>Liu, Jiangwei</creator><creator>Yan, Zian</creator><creator>Chen, Sibao</creator><creator>Sun, Xiao</creator><creator>Luo, Bin</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2447-5305</orcidid><orcidid>https://orcid.org/0000-0003-4538-5146</orcidid><orcidid>https://orcid.org/0000-0003-1481-0162</orcidid><orcidid>https://orcid.org/0000-0001-9750-7032</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid></search><sort><creationdate>20230324</creationdate><title>Channel Attention TextCNN with Feature Word Extraction for Chinese Sentiment Analysis</title><author>Liu, Jiangwei ; Yan, Zian ; Chen, Sibao ; Sun, Xiao ; Luo, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-6336da351a91e340c3ba954d680c7ed9cd28c520a8dd4d719f307e9a407addc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing methodologies</topic><topic>Natural language processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiangwei</creatorcontrib><creatorcontrib>Yan, Zian</creatorcontrib><creatorcontrib>Chen, Sibao</creatorcontrib><creatorcontrib>Sun, Xiao</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on Asian and low-resource language information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiangwei</au><au>Yan, Zian</au><au>Chen, Sibao</au><au>Sun, Xiao</au><au>Luo, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel Attention TextCNN with Feature Word Extraction for Chinese Sentiment Analysis</atitle><jtitle>ACM transactions on Asian and low-resource language information processing</jtitle><stitle>ACM TALLIP</stitle><date>2023-03-24</date><risdate>2023</risdate><volume>22</volume><issue>4</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><artnum>100</artnum><issn>2375-4699</issn><eissn>2375-4702</eissn><abstract>Chinese short text sentiment analysis can help understand society’s views on various hot topics. Many existing sentiment analysis methods are based on sentiment dictionaries. Still, sentiment dictionaries are easily affected by subjective factors. They require a lot of time to build as well as maintenance to prevent obsolescence. For the aim of extracting rich information within texts more effectively, we propose a Channel Attention TextCNN with Feature Word Extraction model (CAT-FWE). The feature word extraction module helps us choose words that affect the sentiment of reviews. Then, these words are integrated with multi-level semantic information to enhance the information of sentences. In addition, the channel attention textCNN module that is a promotion of traditional TextCNN tends to pay more attention to those meaningful features. It eliminates the impacts of features that do not make any sense effectively. We apply our CAT-FWE model to both fine-grained classification and binary classification tasks for Chinese short texts. Experiment results show that it can improve the performance of emotion recognition.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3571716</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2447-5305</orcidid><orcidid>https://orcid.org/0000-0003-4538-5146</orcidid><orcidid>https://orcid.org/0000-0003-1481-0162</orcidid><orcidid>https://orcid.org/0000-0001-9750-7032</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-4699
ispartof ACM transactions on Asian and low-resource language information processing, 2023-03, Vol.22 (4), p.1-23, Article 100
issn 2375-4699
2375-4702
language eng
recordid cdi_crossref_primary_10_1145_3571716
source Access via ACM Digital Library
subjects Computing methodologies
Natural language processing
title Channel Attention TextCNN with Feature Word Extraction for Chinese Sentiment Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20Attention%20TextCNN%20with%20Feature%20Word%20Extraction%20for%20Chinese%20Sentiment%20Analysis&rft.jtitle=ACM%20transactions%20on%20Asian%20and%20low-resource%20language%20information%20processing&rft.au=Liu,%20Jiangwei&rft.date=2023-03-24&rft.volume=22&rft.issue=4&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.artnum=100&rft.issn=2375-4699&rft.eissn=2375-4702&rft_id=info:doi/10.1145/3571716&rft_dat=%3Cacm_cross%3E3571716%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true