Channel Attention TextCNN with Feature Word Extraction for Chinese Sentiment Analysis

Chinese short text sentiment analysis can help understand society’s views on various hot topics. Many existing sentiment analysis methods are based on sentiment dictionaries. Still, sentiment dictionaries are easily affected by subjective factors. They require a lot of time to build as well as maint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on Asian and low-resource language information processing 2023-03, Vol.22 (4), p.1-23, Article 100
Hauptverfasser: Liu, Jiangwei, Yan, Zian, Chen, Sibao, Sun, Xiao, Luo, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chinese short text sentiment analysis can help understand society’s views on various hot topics. Many existing sentiment analysis methods are based on sentiment dictionaries. Still, sentiment dictionaries are easily affected by subjective factors. They require a lot of time to build as well as maintenance to prevent obsolescence. For the aim of extracting rich information within texts more effectively, we propose a Channel Attention TextCNN with Feature Word Extraction model (CAT-FWE). The feature word extraction module helps us choose words that affect the sentiment of reviews. Then, these words are integrated with multi-level semantic information to enhance the information of sentences. In addition, the channel attention textCNN module that is a promotion of traditional TextCNN tends to pay more attention to those meaningful features. It eliminates the impacts of features that do not make any sense effectively. We apply our CAT-FWE model to both fine-grained classification and binary classification tasks for Chinese short texts. Experiment results show that it can improve the performance of emotion recognition.
ISSN:2375-4699
2375-4702
DOI:10.1145/3571716