Type-Preserving, Dependence-Aware Guide Generation for Sound, Effective Amortized Probabilistic Inference

In probabilistic programming languages (PPLs), a critical step in optimization-based inference methods is constructing, for a given model program, a trainable guide program. Soundness and effectiveness of inference rely on constructing good guides, but the expressive power of a universal PPL poses c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages 2023-01, Vol.7 (POPL), p.1454-1482, Article 50
Hauptverfasser: Li, Jianlin, Ven, Leni, Shi, Pengyuan, Zhang, Yizhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1482
container_issue POPL
container_start_page 1454
container_title Proceedings of ACM on programming languages
container_volume 7
creator Li, Jianlin
Ven, Leni
Shi, Pengyuan
Zhang, Yizhou
description In probabilistic programming languages (PPLs), a critical step in optimization-based inference methods is constructing, for a given model program, a trainable guide program. Soundness and effectiveness of inference rely on constructing good guides, but the expressive power of a universal PPL poses challenges. This paper introduces an approach to automatically generating guides for deep amortized inference in a universal PPL. Guides are generated using a type-directed translation per a novel behavioral type system. Guide generation extracts and exploits independence structures using a syntactic approach to conditional independence, with a semantic account left to further work. Despite the control-flow expressiveness allowed by the universal PPL, generated guides are guaranteed to satisfy a critical soundness condition and moreover, consistently improve training and inference over state-of-the-art baselines for a suite of benchmarks.
doi_str_mv 10.1145/3571243
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3571243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3571243</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-22bbcae787837a586a9ec7169ba4cdbd4b76ec5e497b7b619509236b8a6518993</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWGrx7ik3L41uvjabY6m1FgoWrOclyb4rkW52SbaV-uttaRUvMwPzMIdB6JZmD5QK-cilokzwCzRgQklCBaOX__I1GqX0mWUZ1VwUXA-QX-87IKsICeLOh48xfoIOQgXBAZl8mQh4vvXVQSFANL1vA67biN_abajGeFbX4Hq_Azxp2tj7b6jwKrbWWL_xqfcOL0IN8bh2g65qs0kwOvsQvT_P1tMXsnydL6aTJTFMqZ4wZq0zoApVcGVkkRsNTtFcWyNcZSthVQ5OgtDKKptTLTPNeG4Lk0taaM2H6P6062KbUoS67KJvTNyXNCuPJ5Xnkw7k3Yk0rvmDfssffNRhwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Type-Preserving, Dependence-Aware Guide Generation for Sound, Effective Amortized Probabilistic Inference</title><source>ACM Digital Library Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Jianlin ; Ven, Leni ; Shi, Pengyuan ; Zhang, Yizhou</creator><creatorcontrib>Li, Jianlin ; Ven, Leni ; Shi, Pengyuan ; Zhang, Yizhou</creatorcontrib><description>In probabilistic programming languages (PPLs), a critical step in optimization-based inference methods is constructing, for a given model program, a trainable guide program. Soundness and effectiveness of inference rely on constructing good guides, but the expressive power of a universal PPL poses challenges. This paper introduces an approach to automatically generating guides for deep amortized inference in a universal PPL. Guides are generated using a type-directed translation per a novel behavioral type system. Guide generation extracts and exploits independence structures using a syntactic approach to conditional independence, with a semantic account left to further work. Despite the control-flow expressiveness allowed by the universal PPL, generated guides are guaranteed to satisfy a critical soundness condition and moreover, consistently improve training and inference over state-of-the-art baselines for a suite of benchmarks.</description><identifier>ISSN: 2475-1421</identifier><identifier>EISSN: 2475-1421</identifier><identifier>DOI: 10.1145/3571243</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Bayesian computation ; Computing methodologies ; Machine learning ; Mathematics of computing ; Probabilistic computation ; Program reasoning ; Program semantics ; Theory of computation ; Type theory</subject><ispartof>Proceedings of ACM on programming languages, 2023-01, Vol.7 (POPL), p.1454-1482, Article 50</ispartof><rights>Owner/Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-22bbcae787837a586a9ec7169ba4cdbd4b76ec5e497b7b619509236b8a6518993</citedby><cites>FETCH-LOGICAL-a277t-22bbcae787837a586a9ec7169ba4cdbd4b76ec5e497b7b619509236b8a6518993</cites><orcidid>0000-0002-8206-4694 ; 0000-0002-6033-9140 ; 0000-0002-7949-0406 ; 0000-0001-7371-3034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3571243$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2281,27923,27924,40195,76099</link.rule.ids></links><search><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Ven, Leni</creatorcontrib><creatorcontrib>Shi, Pengyuan</creatorcontrib><creatorcontrib>Zhang, Yizhou</creatorcontrib><title>Type-Preserving, Dependence-Aware Guide Generation for Sound, Effective Amortized Probabilistic Inference</title><title>Proceedings of ACM on programming languages</title><addtitle>ACM PACMPL</addtitle><description>In probabilistic programming languages (PPLs), a critical step in optimization-based inference methods is constructing, for a given model program, a trainable guide program. Soundness and effectiveness of inference rely on constructing good guides, but the expressive power of a universal PPL poses challenges. This paper introduces an approach to automatically generating guides for deep amortized inference in a universal PPL. Guides are generated using a type-directed translation per a novel behavioral type system. Guide generation extracts and exploits independence structures using a syntactic approach to conditional independence, with a semantic account left to further work. Despite the control-flow expressiveness allowed by the universal PPL, generated guides are guaranteed to satisfy a critical soundness condition and moreover, consistently improve training and inference over state-of-the-art baselines for a suite of benchmarks.</description><subject>Bayesian computation</subject><subject>Computing methodologies</subject><subject>Machine learning</subject><subject>Mathematics of computing</subject><subject>Probabilistic computation</subject><subject>Program reasoning</subject><subject>Program semantics</subject><subject>Theory of computation</subject><subject>Type theory</subject><issn>2475-1421</issn><issn>2475-1421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEYhIMoWGrx7ik3L41uvjabY6m1FgoWrOclyb4rkW52SbaV-uttaRUvMwPzMIdB6JZmD5QK-cilokzwCzRgQklCBaOX__I1GqX0mWUZ1VwUXA-QX-87IKsICeLOh48xfoIOQgXBAZl8mQh4vvXVQSFANL1vA67biN_abajGeFbX4Hq_Azxp2tj7b6jwKrbWWL_xqfcOL0IN8bh2g65qs0kwOvsQvT_P1tMXsnydL6aTJTFMqZ4wZq0zoApVcGVkkRsNTtFcWyNcZSthVQ5OgtDKKptTLTPNeG4Lk0taaM2H6P6062KbUoS67KJvTNyXNCuPJ5Xnkw7k3Yk0rvmDfssffNRhwA</recordid><startdate>20230109</startdate><enddate>20230109</enddate><creator>Li, Jianlin</creator><creator>Ven, Leni</creator><creator>Shi, Pengyuan</creator><creator>Zhang, Yizhou</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8206-4694</orcidid><orcidid>https://orcid.org/0000-0002-6033-9140</orcidid><orcidid>https://orcid.org/0000-0002-7949-0406</orcidid><orcidid>https://orcid.org/0000-0001-7371-3034</orcidid></search><sort><creationdate>20230109</creationdate><title>Type-Preserving, Dependence-Aware Guide Generation for Sound, Effective Amortized Probabilistic Inference</title><author>Li, Jianlin ; Ven, Leni ; Shi, Pengyuan ; Zhang, Yizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-22bbcae787837a586a9ec7169ba4cdbd4b76ec5e497b7b619509236b8a6518993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian computation</topic><topic>Computing methodologies</topic><topic>Machine learning</topic><topic>Mathematics of computing</topic><topic>Probabilistic computation</topic><topic>Program reasoning</topic><topic>Program semantics</topic><topic>Theory of computation</topic><topic>Type theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Ven, Leni</creatorcontrib><creatorcontrib>Shi, Pengyuan</creatorcontrib><creatorcontrib>Zhang, Yizhou</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of ACM on programming languages</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jianlin</au><au>Ven, Leni</au><au>Shi, Pengyuan</au><au>Zhang, Yizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Type-Preserving, Dependence-Aware Guide Generation for Sound, Effective Amortized Probabilistic Inference</atitle><jtitle>Proceedings of ACM on programming languages</jtitle><stitle>ACM PACMPL</stitle><date>2023-01-09</date><risdate>2023</risdate><volume>7</volume><issue>POPL</issue><spage>1454</spage><epage>1482</epage><pages>1454-1482</pages><artnum>50</artnum><issn>2475-1421</issn><eissn>2475-1421</eissn><abstract>In probabilistic programming languages (PPLs), a critical step in optimization-based inference methods is constructing, for a given model program, a trainable guide program. Soundness and effectiveness of inference rely on constructing good guides, but the expressive power of a universal PPL poses challenges. This paper introduces an approach to automatically generating guides for deep amortized inference in a universal PPL. Guides are generated using a type-directed translation per a novel behavioral type system. Guide generation extracts and exploits independence structures using a syntactic approach to conditional independence, with a semantic account left to further work. Despite the control-flow expressiveness allowed by the universal PPL, generated guides are guaranteed to satisfy a critical soundness condition and moreover, consistently improve training and inference over state-of-the-art baselines for a suite of benchmarks.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3571243</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-8206-4694</orcidid><orcidid>https://orcid.org/0000-0002-6033-9140</orcidid><orcidid>https://orcid.org/0000-0002-7949-0406</orcidid><orcidid>https://orcid.org/0000-0001-7371-3034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-1421
ispartof Proceedings of ACM on programming languages, 2023-01, Vol.7 (POPL), p.1454-1482, Article 50
issn 2475-1421
2475-1421
language eng
recordid cdi_crossref_primary_10_1145_3571243
source ACM Digital Library Complete; EZB-FREE-00999 freely available EZB journals
subjects Bayesian computation
Computing methodologies
Machine learning
Mathematics of computing
Probabilistic computation
Program reasoning
Program semantics
Theory of computation
Type theory
title Type-Preserving, Dependence-Aware Guide Generation for Sound, Effective Amortized Probabilistic Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Type-Preserving,%20Dependence-Aware%20Guide%20Generation%20for%20Sound,%20Effective%20Amortized%20Probabilistic%20Inference&rft.jtitle=Proceedings%20of%20ACM%20on%20programming%20languages&rft.au=Li,%20Jianlin&rft.date=2023-01-09&rft.volume=7&rft.issue=POPL&rft.spage=1454&rft.epage=1482&rft.pages=1454-1482&rft.artnum=50&rft.issn=2475-1421&rft.eissn=2475-1421&rft_id=info:doi/10.1145/3571243&rft_dat=%3Cacm_cross%3E3571243%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true