Type-Preserving, Dependence-Aware Guide Generation for Sound, Effective Amortized Probabilistic Inference
In probabilistic programming languages (PPLs), a critical step in optimization-based inference methods is constructing, for a given model program, a trainable guide program. Soundness and effectiveness of inference rely on constructing good guides, but the expressive power of a universal PPL poses c...
Gespeichert in:
Veröffentlicht in: | Proceedings of ACM on programming languages 2023-01, Vol.7 (POPL), p.1454-1482, Article 50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In probabilistic programming languages (PPLs), a critical step in optimization-based inference methods is constructing, for a given model program, a trainable guide program. Soundness and effectiveness of inference rely on constructing good guides, but the expressive power of a universal PPL poses challenges. This paper introduces an approach to automatically generating guides for deep amortized inference in a universal PPL. Guides are generated using a type-directed translation per a novel behavioral type system. Guide generation extracts and exploits independence structures using a syntactic approach to conditional independence, with a semantic account left to further work. Despite the control-flow expressiveness allowed by the universal PPL, generated guides are guaranteed to satisfy a critical soundness condition and moreover, consistently improve training and inference over state-of-the-art baselines for a suite of benchmarks. |
---|---|
ISSN: | 2475-1421 2475-1421 |
DOI: | 10.1145/3571243 |