Neural Brushstroke Engine: Learning a Latent Style Space of Interactive Drawing Tools

We propose Neural Brushstroke Engine, the first method to apply deep generative models to learn a distribution of interactive drawing tools. Our conditional GAN model learns the latent space of drawing styles from a small set (about 200) of unlabeled images in different media. Once trained, a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2022-12, Vol.41 (6), p.1-18, Article 269
Hauptverfasser: Shugrina, Maria, Li, Chin-Ying, Fidler, Sanja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose Neural Brushstroke Engine, the first method to apply deep generative models to learn a distribution of interactive drawing tools. Our conditional GAN model learns the latent space of drawing styles from a small set (about 200) of unlabeled images in different media. Once trained, a single model can texturize stroke patches drawn by the artist, emulating a diverse collection of brush styles in the latent space. In order to enable interactive painting on a canvas of arbitrary size, we design a painting engine able to support real-time seamless patch-based generation, while allowing artists direct control of stroke shape, color and thickness. We show that the latent space learned by our model generalizes to unseen drawing and more experimental styles (e.g. beads) by embedding real styles into the latent space. We explore other applications of the continuous latent space, such as optimizing brushes to enable painting in the style of an existing artwork, automatic line drawing stylization, brush interpolation, and even natural language search over a continuous space of drawing tools. Our prototype received positive feedback from a small group of digital artists.
ISSN:0730-0301
1557-7368
DOI:10.1145/3550454.3555472