Video-Driven Neural Physically-Based Facial Asset for Production

Production-level workflows for producing convincing 3D dynamic human faces have long relied on an assortment of labor-intensive tools for geometry and texture generation, motion capture and rigging, and expression synthesis. Recent neural approaches automate individual components but the correspondi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2022-12, Vol.41 (6), p.1-16, Article 208
Hauptverfasser: Zhang, Longwen, Zeng, Chuxiao, Zhang, Qixuan, Lin, Hongyang, Cao, Ruixiang, Yang, Wei, Xu, Lan, Yu, Jingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Production-level workflows for producing convincing 3D dynamic human faces have long relied on an assortment of labor-intensive tools for geometry and texture generation, motion capture and rigging, and expression synthesis. Recent neural approaches automate individual components but the corresponding latent representations cannot provide artists with explicit controls as in conventional tools. In this paper, we present a new learning-based, video-driven approach for generating dynamic facial geometries with high-quality physically-based assets. For data collection, we construct a hybrid multiview-photometric capture stage, coupling with ultra-fast video cameras to obtain raw 3D facial assets. We then set out to model the facial expression, geometry and physically-based textures using separate VAEs where we impose a global MLP based expression mapping across the latent spaces of respective networks, to preserve characteristics across respective attributes. We also model the delta information as wrinkle maps for the physically-based textures, achieving high-quality 4K dynamic textures. We demonstrate our approach in high-fidelity performer-specific facial capture and cross-identity facial motion retargeting. In addition, our multi-VAE-based neural asset, along with the fast adaptation schemes, can also be deployed to handle in-the-wild videos. Besides, we motivate the utility of our explicit facial disentangling strategy by providing various promising physically-based editing results with high realism. Comprehensive experiments show that our technique provides higher accuracy and visual fidelity than previous video-driven facial reconstruction and animation methods.
ISSN:0730-0301
1557-7368
DOI:10.1145/3550454.3555445