AIMCU-MESO: An In-Memory Computing Unit Constructed by MESO Device

Traditional CMOS-based von-Neumann computer architecture faces the issue of memory wall that the limitation of bus-bandwidth and the speed mismatch between processor and memory restrict the efficiency of data processing along with an irreducible energy consumption conducted by data movement, especia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on design automation of electronic systems 2023-01, Vol.28 (1), p.1-16, Article 8
Hauptverfasser: Zeng, Junwei, Xu, Nuo, Chen, Yabo, Huang, Chenglong, Li, Zhiwei, Fang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional CMOS-based von-Neumann computer architecture faces the issue of memory wall that the limitation of bus-bandwidth and the speed mismatch between processor and memory restrict the efficiency of data processing along with an irreducible energy consumption conducted by data movement, especially in some data-intensive applications. Recently, some novel in-memory computing (IMC) paradigms developed by utilizing the characteristics of different non-volatile memories provide promising ways to overcome the bottleneck of memory wall. Here, we propose a new IMC unit based on a memory array with the core element of magnetoelectric spin-orbit logic (MESO) device (AIMCU-MESO), in which the characteristics of the MESO device are exploited to achieve several in-memory logic operations with the functions of NAND, NOR, and XOR in the MESO-based memory array. With the aid of some transistor-based switches, these logic operations can be achieved between any two MESOs in the array. Furthermore, the computing process of a 1-bit full adder (FA) is achieved in AIMCU-MESO by the in-memory logic manner to demonstrate the ability of logic cascading. The result of SPICE simulation for achieving the 1-bit FA using MESO devices is demonstrated, and the performances are compared with other designs of spintronics-based devices. Compared to multilevel voltage-controlled spin-orbit torque–based magnetic memory, the proposed design demonstrates 71.4% and 49.2% reductions in terms of storage delay and logic delay, respectively.
ISSN:1084-4309
1557-7309
DOI:10.1145/3539575