A Multi-channel Hierarchical Graph Attention Network for Open Event Extraction

Event extraction is an essential task in natural language processing. Although extensively studied, existing work shares issues in three aspects, including (1) the limitations of using original syntactic dependency structure, (2) insufficient consideration of the node level and type information in G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on information systems 2023-01, Vol.41 (1), p.1-27, Article 20
Hauptverfasser: Wan, Qizhi, Wan, Changxuan, Xiao, Keli, Hu, Rong, Liu, Dexi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Event extraction is an essential task in natural language processing. Although extensively studied, existing work shares issues in three aspects, including (1) the limitations of using original syntactic dependency structure, (2) insufficient consideration of the node level and type information in Graph Attention Network (GAT), and (3) insufficient joint exploitation of the node dependency type and part-of-speech (POS) encoding on the graph structure. To address these issues, we propose a novel framework for open event extraction in documents. Specifically, to obtain an enhanced dependency structure with powerful encoding ability, our model is capable of handling an enriched parallel structure with connected ellipsis nodes. Moreover, through a bidirectional dependency parsing graph, it considers the sequence of order structure and associates the ancestor and descendant nodes. Subsequently, we further exploit node information, such as the node level and type, to strengthen the aggregation of node features in our GAT. Finally, based on the coordination of triple-channel features (i.e., semantic, syntactic dependency and POS), the performance of event extraction is significantly improved. Extensive experiments are conducted to validate the effectiveness of our method, and the results confirm its superiority over the state-of-the-art baselines. Furthermore, in-depth analyses are provided to explore the essential factors determining the extraction performance.
ISSN:1046-8188
1558-2868
DOI:10.1145/3528668