Contact-centric deformation learning
We propose a novel method to machine-learn highly detailed, nonlinear contact deformations for real-time dynamic simulation. We depart from previous deformation-learning strategies, and model contact deformations in a contact-centric manner. This strategy shows excellent generalization with respect...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2022-07, Vol.41 (4), p.1-11, Article 70 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a novel method to machine-learn highly detailed, nonlinear contact deformations for real-time dynamic simulation. We depart from previous deformation-learning strategies, and model contact deformations in a contact-centric manner. This strategy shows excellent generalization with respect to the object's configuration space, and it allows for simple and accurate learning. We complement the contact-centric learning strategy with two additional key ingredients: learning a continuous vector field of contact deformations, instead of a discrete approximation; and sparsifying the mapping between the contact configuration and contact deformations. These two ingredients further contribute to the accuracy, efficiency, and generalization of the method. We integrate our learning-based contact deformation model with subspace dynamics, showing real-time dynamic simulations with fine contact deformation detail. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/3528223.3530182 |