Moving level-of-detail surfaces
We present a simple, fast, and smooth scheme to approximate Algebraic Point Set Surfaces using non-compact kernels, which is particularly suited for filtering and reconstructing point sets presenting large missing parts. Our key idea is to consider a moving level-of-detail of the input point set whi...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2022-07, Vol.41 (4), p.1-10, Article 130 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a simple, fast, and smooth scheme to approximate Algebraic Point Set Surfaces using non-compact kernels, which is particularly suited for filtering and reconstructing point sets presenting large missing parts. Our key idea is to consider a moving level-of-detail of the input point set which is adaptive w.r.t. to the evaluation location, just such as the samples weights are output sensitive in the traditional moving least squares scheme. We also introduce an adaptive progressive octree refinement scheme, driven by the resulting implicit surface, to properly capture the modeled geometry even far away from the input samples. Similarly to typical compactly-supported approximations, our operator runs in logarithmic time while defining high quality surfaces even on challenging inputs for which only global optimizations achieve reasonable results. We demonstrate our technique on a variety of point sets featuring geometric noise as well as large holes. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/3528223.3530151 |