Automatic Assessment of Depression and Anxiety through Encoding Pupil-wave from HCI in VR Scenes

At present, there have been many studies on the methods of using the deep learning regression model to assess depression level based on behavioral signals (facial expression, speech, and language); however, the research on the assessment method of anxiety level using deep learning is absent. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on multimedia computing communications and applications 2023-09, Vol.20 (2), p.1-22, Article 42
Hauptverfasser: Li, Mi, Zhang, Wei, Hu, Bin, Kang, Jiaming, Wang, Yuqi, Lu, Shengfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At present, there have been many studies on the methods of using the deep learning regression model to assess depression level based on behavioral signals (facial expression, speech, and language); however, the research on the assessment method of anxiety level using deep learning is absent. In this article, pupil-wave, a physiological signal collected by Human Computer Interaction (HCI) that can directly represent the emotional state, is developed to assess the level of depression and anxiety for the first time. In order to distinguish between different depression and anxiety levels, we use the HCI method to induce the participants’ emotional experience through three virtual reality (VR) emotional scenes of joyful, sad, and calm, and construct two differential pupil-waves of joyful and sad with the calm pupil-wave as the baseline. Correspondingly, a dual-channel fusion depression and anxiety level assessment model is constructed using the improved multi-scale convolution module and our proposed width-channel attention module for one-dimensional signal processing. The test results show that the MAE/RMSE of the depression and anxiety level assessment method proposed in this article is 3.05/4.11 and 2.49/1.85, respectively, which has better assessment performance than other related research methods. This study provides an automatic assessment technique based on human computer interaction and virtual reality for mental health physical examination.
ISSN:1551-6857
1551-6865
DOI:10.1145/3513263