Tribe or Not? Critical Inspection of Group Differences Using TribalGram
With the rise of AI and data mining techniques, group profiling and group-level analysis have been increasingly used in many domains, including policy making and direct marketing. In some cases, the statistics extracted from data may provide insights to a group’s shared characteristics; in others, t...
Gespeichert in:
Veröffentlicht in: | ACM transactions on interactive intelligent systems 2022-03, Vol.12 (1), p.1-34, Article 5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the rise of AI and data mining techniques, group profiling and group-level analysis have been increasingly used in many domains, including policy making and direct marketing. In some cases, the statistics extracted from data may provide insights to a group’s shared characteristics; in others, the group-level analysis can lead to problems, including stereotyping and systematic oppression. How can analytic tools facilitate a more conscientious process in group analysis? In this work, we identify a set of accountable group analytics design guidelines to explicate the needs for group differentiation and preventing overgeneralization of a group. Following the design guidelines, we develop TribalGram, a visual analytic suite that leverages interpretable machine learning algorithms and visualization to offer inference assessment, model explanation, data corroboration, and sense-making. Through the interviews with domain experts, we showcase how our design and tools can bring a richer understanding of “groups” mined from the data. |
---|---|
ISSN: | 2160-6455 2160-6463 |
DOI: | 10.1145/3484509 |