Approximation Algorithms for the Bottleneck Asymmetric Traveling Salesman Problem

We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem . Given an asymmetric metric cost between n vertices, the problem is to find a Hamiltonian cycle that minimizes its bottleneck (or maximum-length edge) cost. We achieve an O (log n / log...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on algorithms 2021-10, Vol.17 (4), p.1-12
Hauptverfasser: An, Hyung-Chan, Kleinberg, Robert, Shmoys, David B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem . Given an asymmetric metric cost between n vertices, the problem is to find a Hamiltonian cycle that minimizes its bottleneck (or maximum-length edge) cost. We achieve an O (log n / log log n ) approximation performance guarantee by giving a novel algorithmic technique to shortcut Eulerian circuits while bounding the lengths of the shortcuts needed. This allows us to build on a related result of Asadpour, Goemans, Mądry, Oveis Gharan, and Saberi to obtain this guarantee. Furthermore, we show how our technique yields stronger approximation bounds in some cases, such as the bounded orientable genus case studied by Oveis Gharan and Saberi. We also explore the possibility of further improvement upon our main result through a comparison to the symmetric counterpart of the problem.
ISSN:1549-6325
1549-6333
DOI:10.1145/3478537