SortCache: Intelligent Cache Management for Accelerating Sparse Data Workloads

Sparse data applications have irregular access patterns that stymie modern memory architectures. Although hyper-sparse workloads have received considerable attention in the past, moderately-sparse workloads prevalent in machine learning applications, graph processing and HPC have not. Where the form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on architecture and code optimization 2021-12, Vol.18 (4), p.1-24
Hauptverfasser: Srikanth, Sriseshan, Jain, Anirudh, Conte, Thomas M., Debenedictis, Erik P., Cook, Jeanine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sparse data applications have irregular access patterns that stymie modern memory architectures. Although hyper-sparse workloads have received considerable attention in the past, moderately-sparse workloads prevalent in machine learning applications, graph processing and HPC have not. Where the former can bypass the cache hierarchy, the latter fit in the cache. This article makes the observation that intelligent, near-processor cache management can improve bandwidth utilization for data-irregular accesses, thereby accelerating moderately-sparse workloads. We propose SortCache, a processor-centric approach to accelerating sparse workloads by introducing accelerators that leverage the on-chip cache subsystem, with minimal programmer intervention.
ISSN:1544-3566
1544-3973
DOI:10.1145/3473332