Categorizing Sexism and Misogyny through Neural Approaches
Sexism, an injustice that subjects women and girls to enormous suffering, manifests in blatant as well as subtle ways. In the wake of growing documentation of experiences of sexism on the web, the automatic categorization of accounts of sexism has the potential to assist social scientists and policy...
Gespeichert in:
Veröffentlicht in: | ACM transactions on the web 2021-07, Vol.15 (4), p.1-31 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sexism, an injustice that subjects women and girls to enormous suffering, manifests in blatant as well as subtle ways. In the wake of growing documentation of experiences of sexism on the web, the automatic categorization of accounts of sexism has the potential to assist social scientists and policymakers in studying and thereby countering sexism. The existing work on sexism classification has certain limitations in terms of the categories of sexism used and/or whether they can co-occur. To the best of our knowledge, this is the first work on the multi-label classification of sexism of any kind(s).
1
We also consider the related task of misogyny classification. While sexism classification is performed on textual accounts describing sexism suffered or observed, misogyny classification is carried out on tweets perpetrating misogyny. We devise a novel neural framework for classifying sexism and misogyny that can combine text representations obtained using models such as Bidirectional Encoder Representations from Transformers with distributional and linguistic word embeddings using a flexible architecture involving recurrent components and optional convolutional ones. Further, we leverage unlabeled accounts of sexism to infuse domain-specific elements into our framework. To evaluate the versatility of our neural approach for tasks pertaining to sexism and misogyny, we experiment with adapting it for misogyny identification. For categorizing sexism, we investigate multiple loss functions and problem transformation techniques to address the multi-label problem formulation. We develop an ensemble approach using a proposed multi-label classification model with potentially overlapping subsets of the category set. Proposed methods outperform several deep-learning as well as traditional machine learning baselines for all three tasks. |
---|---|
ISSN: | 1559-1131 1559-114X |
DOI: | 10.1145/3457189 |