A Camera Identity-guided Distribution Consistency Method for Unsupervised Multi-target Domain Person Re-identification

Unsupervised domain adaptation (UDA) for person re-identification (re-ID) is a challenging task due to large variations in human classes, illuminations, camera views, and so on. Currently, existing UDA methods focus on two-domain adaptation and are generally trained on one labeled source set and ada...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on intelligent systems and technology 2021-08, Vol.12 (4), p.1-18
Hauptverfasser: Tian, Jiajie, Tang, Qihao, Li, Rui, Teng, Zhu, Zhang, Baopeng, Fan, Jianping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unsupervised domain adaptation (UDA) for person re-identification (re-ID) is a challenging task due to large variations in human classes, illuminations, camera views, and so on. Currently, existing UDA methods focus on two-domain adaptation and are generally trained on one labeled source set and adapted on the other unlabeled target set. In this article, we put forward a new issue on person re-ID, namely, unsupervised multi-target domain adaptation (UMDA). It involves one labeled source set and multiple unlabeled target sets, which is more reasonable for practical real-world applications. Enabling UMDA has to learn the consistency for multiple domains, which is significantly different from the UDA problem. To ensure distribution consistency and learn the discriminative embedding, we further propose the Camera Identity-guided Distribution Consistency method that performs an alignment operation for multiple domains. The camera identities are encoded into the image semantic information to facilitate the adaptation of features. According to our knowledge, this is the first attempt on the unsupervised multi-target domain adaptation learning. Extensive experiments are executed on Market-1501, DukeMTMC-reID, MSMT17, PersonX, and CUHK03, and our method has achieved very competitive re-ID accuracy in multi-target domains against numerous state-of-the-art methods.
ISSN:2157-6904
2157-6912
DOI:10.1145/3454130