Parallel Computing of Graph-based Functions in ReRAM
Resistive Random Access Memory (ReRAM) is an emerging non-volatile memory technology. Besides its low power consumption and its high scalability, its inherent computation capabilities make ReRAM especially interesting for future computer architectures. Merging computations into the memory is a promi...
Gespeichert in:
Veröffentlicht in: | ACM journal on emerging technologies in computing systems 2022-04, Vol.18 (2), p.1-24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resistive Random Access Memory (ReRAM) is an emerging non-volatile memory technology. Besides its low power consumption and its high scalability, its inherent computation capabilities make ReRAM especially interesting for future computer architectures. Merging computations into the memory is a promising solution for overcoming the memory bottleneck.
To perform computations in ReRAM, efficient synthesis strategies for Boolean functions have to be developed. In this article, we give a thorough presentation of how to employ parallel computing capabilities of ReRAM for the synthesis of functions given state-of-the-art graph-based representations AIGs or BDDs. Additionally, we introduce a new graph-based representation called m-And-Inverter Graph (m-AIGs), which allows us to fully exploit the computing capabilities of ReRAM. In the simulations, we show that our proposed approaches outperform state-of-the art synthesis strategies, and we show the superiority of m-AIGs over the standard AIG representation for ReRAM-based synthesis. |
---|---|
ISSN: | 1550-4832 1550-4840 |
DOI: | 10.1145/3453163 |