Learning Multimodal Affinities for Textual Editing in Images

Nowadays, as cameras are rapidly adopted in our daily routine, images of documents are becoming both abundant and prevalent. Unlike natural images that capture physical objects, document-images contain a significant amount of text with critical semantics and complicated layouts. In this work, we dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2021-06, Vol.40 (3), p.1-16, Article 26
Hauptverfasser: Perel, Or, Anschel, Oron, Ben-Eliezer, Omri, Mazor, Shai, Averbuch-Elor, Hadar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, as cameras are rapidly adopted in our daily routine, images of documents are becoming both abundant and prevalent. Unlike natural images that capture physical objects, document-images contain a significant amount of text with critical semantics and complicated layouts. In this work, we devise a generic unsupervised technique to learn multimodal affinities between textual entities in a document-image, considering their visual style, the content of their underlying text, and their geometric context within the image. We then use these learned affinities to automaticallycluster the textual entities in the image into different semantic groups. The core of our approach is a deep optimization scheme dedicated for an image provided by the user that detects and leverages reliable pairwise connections in the multimodal representation of the textual elements to properly learn the affinities. We show that our technique can operate on highly varying images spanning a wide range of documents and demonstrate its applicability for various editing operations manipulating the content, appearance, and geometry of the image.
ISSN:0730-0301
1557-7368
DOI:10.1145/3451340