CONCEALING-Gate: Optical Contactless Probing Resilient Design

Optical probing, though developed as silicon debugging tools from the chip backside, has shown its capability of extracting secret data, such as cryptographic keys and user identifications, from modern system-on-chip devices. Existing optical probing countermeasures are based on detecting any device...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM journal on emerging technologies in computing systems 2021-07, Vol.17 (3), p.1-25
Hauptverfasser: Rahman, M. Tanjidur, Dipu, Nusrat Farzana, Mehta, Dhwani, Tajik, Shahin, Tehranipoor, Mark, Asadizanjani, Navid
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical probing, though developed as silicon debugging tools from the chip backside, has shown its capability of extracting secret data, such as cryptographic keys and user identifications, from modern system-on-chip devices. Existing optical probing countermeasures are based on detecting any device modification attempt or abrupt change in operating conditions during asset extraction. These countermeasures usually require additional fabrication steps and cause area and power overheads. In this article, we propose a novel low-overhead design methodology to prevent optical probing. It leverages additional operational logic gates, termed as “CONCEALING-Gates,” inserted as neighbor gates of the logic gates connected to the nets carrying asset signals. The switching activity of the asset carrying logic is camouflaged with the switching activity of the concealing-gate. The input signal and placement in the layout of the concealing-gates must be selected in such a way that they remain equally effective in preventing different variants of optical probing, i.e., electro-optical frequency mapping and Electro-optical probing. The methodology is suitable for the existing ASIC/FPGA design flow and fabrication process, since designing new standard logic cells is not required. We have performed a comprehensive security evaluation of the concealing-gates using a security metric developed based on the parameters that are crucial for optical probing. The attack resiliency of the logic cells, protected by concealing-gates, is evaluated using an empirical study-based simulation methodology and experimental validation. Our analysis has shown that in the presence of concealing-gates, logic cells achieve high resiliency against optical contactless probing techniques.
ISSN:1550-4832
1550-4840
DOI:10.1145/3446998