Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network
With the rapid development of mobile app ecosystem, mobile apps have grown greatly popular. The explosive growth of apps makes it difficult for users to find apps that meet their interests. Therefore, it is necessary to recommend user with a personalized set of apps. However, one of the challenges i...
Gespeichert in:
Veröffentlicht in: | ACM transactions on knowledge discovery from data 2021-06, Vol.15 (4), p.1-21 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the rapid development of mobile app ecosystem, mobile apps have grown greatly popular. The explosive growth of apps makes it difficult for users to find apps that meet their interests. Therefore, it is necessary to recommend user with a personalized set of apps. However, one of the challenges is data sparsity, as users’ historical behavior data are usually insufficient. In fact, user’s behaviors from different domains in app store regarding the same apps are usually relevant. Therefore, we can alleviate the sparsity using complementary information from correlated domains. It is intuitive to model users’ behaviors using graph, and graph neural networks have shown the great power for representation learning. In this article, we propose a novel model, Deep Multi-Graph Embedding (DMGE), to learn cross-domain app embedding. Specifically, we first construct a multi-graph based on users’ behaviors from different domains, and then propose a multi-graph neural network to learn cross-domain app embedding. Particularly, we present an adaptive method to balance the weight of each domain and efficiently train the model. Finally, we achieve cross-domain app recommendation based on the learned app embedding. Extensive experiments on real-world datasets show that DMGE outperforms other state-of-art embedding methods. |
---|---|
ISSN: | 1556-4681 1556-472X |
DOI: | 10.1145/3442201 |