Characterizing Stage-aware Writing Assistance for Collaborative Document Authoring

Writing is a complex non-linear process that begins with a mental model of intent, and progresses through an outline of ideas, to words on paper (and their subsequent refinement). Despite past research in understanding writing, Web-scale consumer and enterprise collaborative digital writing environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ACM on human-computer interaction 2021-01, Vol.4 (CSCW3), p.1-29, Article 271
Hauptverfasser: Sarrafzadeh, Bahareh, Jauhar, Sujay Kumar, Gamon, Michael, Lank, Edward, White, Ryen W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Writing is a complex non-linear process that begins with a mental model of intent, and progresses through an outline of ideas, to words on paper (and their subsequent refinement). Despite past research in understanding writing, Web-scale consumer and enterprise collaborative digital writing environments are yet to greatly benefit from intelligent systems that understand the stages of document evolution, providing opportune assistance based on authors' situated actions and context. In this paper, we present three studies that explore temporal stages of document authoring. We first survey information workers at a large technology company about their writing habits and preferences, concluding that writers do in fact conceptually progress through several distinct phases while authoring documents. We also explore, qualitatively, how writing stages are linked to document lifespan. We supplement these qualitative findings with an analysis of the longitudinal user interaction logs of a popular digital writing platform over several million documents. Finally, as a first step towards facilitating an intelligent digital writing assistant, we conduct a preliminary investigation into the utility of user interaction log data for predicting the temporal stage of a document. Our results support the benefit of tools tailored to writing stages, identify primary tasks associated with these stages, and show that it is possible to predict stages from anonymous interaction logs. Together, these results argue for the benefit and feasibility of more tailored digital writing assistance.
ISSN:2573-0142
2573-0142
DOI:10.1145/3434180