UNILOGIC: A Novel Architecture for Highly Parallel Reconfigurable Systems

One of the main characteristics of High-performance Computing (HPC) applications is that they become increasingly performance and power demanding, pushing HPC systems to their limits. Existing HPC systems have not yet reached exascale performance mainly due to power limitations. Extrapolating from t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on reconfigurable technology and systems 2020-10, Vol.13 (4), p.1-32
Hauptverfasser: Ioannou, Aggelos D., Georgopoulos, Konstantinos, Malakonakis, Pavlos, Pnevmatikatos, Dionisios N., Papaefstathiou, Vassilis D., Papaefstathiou, Ioannis, Mavroidis, Iakovos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the main characteristics of High-performance Computing (HPC) applications is that they become increasingly performance and power demanding, pushing HPC systems to their limits. Existing HPC systems have not yet reached exascale performance mainly due to power limitations. Extrapolating from today’s top HPC systems, about 100–200 MWatts would be required to sustain an exaflop-level of performance. A promising solution for tackling power limitations is the deployment of energy-efficient reconfigurable resources (in the form of Field-programmable Gate Arrays (FPGAs)) tightly integrated with conventional CPUs. However, current FPGA tools and programming environments are optimized for accelerating a single application or even task on a single FPGA device. In this work, we present UNILOGIC (Unified Logic), a novel HPC-tailored parallel architecture that efficiently incorporates FPGAs. UNILOGIC adopts the Partitioned Global Address Space (PGAS) model and extends it to include hardware accelerators, i.e., tasks implemented on the reconfigurable resources. The main advantages of UNILOGIC are that (i) the hardware accelerators can be accessed directly by any processor in the system, and (ii) the hardware accelerators can access any memory location in the system. In this way, the proposed architecture offers a unified environment where all the reconfigurable resources can be seamlessly used by any processor/operating system. The UNILOGIC architecture also provides hardware virtualization of the reconfigurable logic so that the hardware accelerators can be shared among multiple applications or tasks. The FPGA layer of the architecture is implemented by splitting its reconfigurable resources into (i) a static partition, which provides the PGAS-related communication infrastructure, and (ii) fixed-size and dynamically reconfigurable slots that can be programmed and accessed independently or combined together to support both fine and coarse grain reconfiguration. 1 Finally, the UNILOGIC architecture has been evaluated on a custom prototype that consists of two 1U chassis, each of which includes eight interconnected daughter boards, called Quad-FPGA Daughter Boards (QFDBs); each QFDB supports four tightly coupled Xilinx Zynq Ultrascale+ MPSoCs as well as 64 Gigabytes of DDR4 memory, and thus, the prototype features a total of 64 Zynq MPSoCs and 1 Terabyte of memory. We tuned and evaluated the UNILOGIC prototype using both low-level (baremetal) performance tests, as
ISSN:1936-7406
1936-7414
1936-7414
DOI:10.1145/3409115