Hierarchical Optimization Time Integration for CFL-Rate MPM Stepping

We propose Hierarchical Optimization Time Integration (HOT) for efficient implicit timestepping of the material point method (MPM) irrespective of simulated materials and conditions. HOT is an MPM-specialized hierarchical optimization algorithm that solves nonlinear timestep problems for large-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2020-06, Vol.39 (3), p.1-16, Article 21
Hauptverfasser: Wang, Xinlei, Li, Minchen, Fang, Yu, Zhang, Xinxin, Gao, Ming, Tang, Min, Kaufman, Danny M., Jiang, Chenfanfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose Hierarchical Optimization Time Integration (HOT) for efficient implicit timestepping of the material point method (MPM) irrespective of simulated materials and conditions. HOT is an MPM-specialized hierarchical optimization algorithm that solves nonlinear timestep problems for large-scale MPM systems near the CFL limit. HOT provides convergent simulations out of the box across widely varying materials and computational resolutions without parameter tuning. As an implicit MPM timestepper accelerated by a custom-designed Galerkin multigrid wrapped in a quasi-Newton solver, HOT is both highly parallelizable and robustly convergent. As we show in our analysis, HOT maintains consistent and efficient performance even as we grow stiffness, increase deformation, and vary materials over a wide range of finite strain, elastodynamic, and plastic examples. Through careful benchmark ablation studies, we compare the effectiveness of HOT against seemingly plausible alternative combinations of MPM with standard multigrid and other Newton-Krylov models. We show how these alternative designs result in severe issues and poor performance. In contrast, HOT outperforms existing state-of-the-art heavily optimized implicit MPM codes with an up to 10x performance speedup across a wide range of challenging benchmark test simulations.
ISSN:0730-0301
1557-7368
DOI:10.1145/3386760