Using Generative Adversarial Networks to Break and Protect Text Captchas

Text-based CAPTCHAs remains a popular scheme for distinguishing between a legitimate human user and an automated program. This article presents a novel genetic text captcha solver based on the generative adversarial network. As a departure from prior text captcha solvers that require a labor-intensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on privacy and security 2020-05, Vol.23 (2), p.1-29
Hauptverfasser: Ye, Guixin, Tang, Zhanyong, Fang, Dingyi, Zhu, Zhanxing, Feng, Yansong, Xu, Pengfei, Chen, Xiaojiang, Han, Jungong, Wang, Zheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Text-based CAPTCHAs remains a popular scheme for distinguishing between a legitimate human user and an automated program. This article presents a novel genetic text captcha solver based on the generative adversarial network. As a departure from prior text captcha solvers that require a labor-intensive and time-consuming process to construct, our scheme needs significantly fewer real captchas but yields better performance in solving captchas. Our approach works by first learning a synthesizer to automatically generate synthetic captchas to construct a base solver. It then improves and fine-tunes the base solver using a small number of labeled real captchas. As a result, our attack requires only a small set of manually labeled captchas, which reduces the cost of launching an attack on a captcha scheme. We evaluate our scheme by applying it to 33 captcha schemes, of which 11 are currently used by 32 of the top-50 popular websites. Experimental results demonstrate that our scheme significantly outperforms four prior captcha solvers and can solve captcha schemes where others fail. As a countermeasure, we propose to add imperceptible perturbations onto a captcha image. We demonstrate that our countermeasure can greatly reduce the success rate of the attack.
ISSN:2471-2566
2471-2574
DOI:10.1145/3378446