Quantifying Data Locality in Dynamic Parallelism in GPUs

Dynamic parallelism (DP) is a new feature of emerging GPUs that allows new kernels to be generated and scheduled from the deviceside (GPU) without the host-side (CPU) intervention. To eiciently support DP, one of the major challenges is to saturate the GPU processing elements and provide them with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Performance evaluation review 2019-12, Vol.47 (1), p.25-26
Hauptverfasser: Tang, Xulong, Pattnaik, Ashutosh, Kayiran, Onur, Jog, Adwait, Kandemir, Mahmut Taylan, Das, Chita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic parallelism (DP) is a new feature of emerging GPUs that allows new kernels to be generated and scheduled from the deviceside (GPU) without the host-side (CPU) intervention. To eiciently support DP, one of the major challenges is to saturate the GPU processing elements and provide them with the required data in a timely fashion. In this paper, we irst conduct a limit study on the performance improvements that can be achieved by hardware schedulers that are provided with accurate data reuse information. We next propose LASER, a Locality-Aware SchedulER, where the hardware schedulers employ data reuse monitors to help make scheduling decisions to improve data locality at runtime. Experimental results on 16 benchmarks show that LASER, on an average, can improve performance by 11.3%.
ISSN:0163-5999
DOI:10.1145/3376930.3376947